mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-18 03:58:25 +06:00

* Fix issues in test_exponential_decay_length_penalty Fix tests which were broken and add validation of negative scores. Current test didn't take into account that ExponentialDecayLengthPenalty updates the score inplace, resulting in updates to base tested Tensor. In addition, the gt assert had empty Tensors due to indexing along the batch dimension. Test is currently expected to fail to show ExponentialDecayLengthPenalty issues with negative scores * Fix ExponentialDecayLengthPenalty negative logits issue In cases where the scores are negative, ExponentialDecayLengthPenalty decreases the score of eos_token_id instead of increasing it. To fix this issue we compute the penalty of the absolute value and add it to the original score. * Add examples for ExponentialDecayLengthPenalty * Fix styling issue in ExponentialDecayLengthPenalty doc * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Style and quality fix * Fix example outputs --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
803 lines
34 KiB
Python
803 lines
34 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from typing import List, Union
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
|
|
from ..test_modeling_common import ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers.generation import (
|
|
EncoderNoRepeatNGramLogitsProcessor,
|
|
EncoderRepetitionPenaltyLogitsProcessor,
|
|
EpsilonLogitsWarper,
|
|
EtaLogitsWarper,
|
|
ExponentialDecayLengthPenalty,
|
|
ForcedBOSTokenLogitsProcessor,
|
|
ForcedEOSTokenLogitsProcessor,
|
|
HammingDiversityLogitsProcessor,
|
|
InfNanRemoveLogitsProcessor,
|
|
LogitNormalization,
|
|
LogitsProcessorList,
|
|
MinLengthLogitsProcessor,
|
|
MinNewTokensLengthLogitsProcessor,
|
|
NoBadWordsLogitsProcessor,
|
|
NoRepeatNGramLogitsProcessor,
|
|
PrefixConstrainedLogitsProcessor,
|
|
RepetitionPenaltyLogitsProcessor,
|
|
SequenceBiasLogitsProcessor,
|
|
TemperatureLogitsWarper,
|
|
TopKLogitsWarper,
|
|
TopPLogitsWarper,
|
|
TypicalLogitsWarper,
|
|
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class LogitsProcessorTest(unittest.TestCase):
|
|
def _get_uniform_logits(self, batch_size: int, length: int):
|
|
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
|
|
return scores
|
|
|
|
def test_min_length_dist_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
|
|
min_dist_processor = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
|
|
|
|
# check that min length is applied at length 5
|
|
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])
|
|
|
|
# check that min length is not applied anymore at length 15
|
|
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
@parameterized.expand([(0,), ([0, 18],)])
|
|
def test_new_min_length_dist_processor(self, eos_token_id: Union[int, List[int]]):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
|
|
# check that first input is skipped (min new length applying)
|
|
input_ids = ids_tensor((batch_size, 5), vocab_size=20)
|
|
new_min_dist_processor = MinNewTokensLengthLogitsProcessor(
|
|
prompt_length_to_skip=input_ids.shape[-1], min_new_tokens=3, eos_token_id=eos_token_id
|
|
)
|
|
|
|
expected_eos_scores_before_min_length = batch_size * [-float("inf")]
|
|
if isinstance(eos_token_id, list):
|
|
expected_eos_scores_before_min_length *= len(eos_token_id)
|
|
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that, for skipping, now prompt length is 5, after that we expect first 5 tokens will be skipped
|
|
self.assertTrue(new_min_dist_processor.prompt_length_to_skip == 5)
|
|
|
|
# check that min length is applied at length 2
|
|
input_ids = ids_tensor((batch_size, 2), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is applied at length 6 (because it has only 1 new token)
|
|
input_ids = ids_tensor((batch_size, 6), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is applied at length 7 (because it has only 2 new tokens)
|
|
input_ids = ids_tensor((batch_size, 7), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertListEqual(
|
|
scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
|
|
)
|
|
|
|
# check that min new length is not applied anymore at length 8
|
|
input_ids = ids_tensor((batch_size, 8), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
# check that min new length is not applied anymore at length 15
|
|
input_ids = ids_tensor((batch_size, 15), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_min_length = new_min_dist_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores_before_min_length).any())
|
|
|
|
def test_temperature_dist_warper(self):
|
|
input_ids = None
|
|
length = 20
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=length)
|
|
|
|
# tweak scores to not be uniform anymore
|
|
scores[1, 5] = (1 / length) + 0.1 # peak, 1st batch
|
|
scores[1, 10] = (1 / length) - 0.4 # valley, 1st batch
|
|
|
|
# compute softmax
|
|
probs = nn.functional.softmax(scores, dim=-1)
|
|
|
|
temp_dist_warper_sharper = TemperatureLogitsWarper(temperature=0.5)
|
|
temp_dist_warper_smoother = TemperatureLogitsWarper(temperature=1.3)
|
|
|
|
warped_prob_sharp = nn.functional.softmax(temp_dist_warper_sharper(input_ids, scores.clone()), dim=-1)
|
|
warped_prob_smooth = nn.functional.softmax(temp_dist_warper_smoother(input_ids, scores.clone()), dim=-1)
|
|
|
|
# uniform distribution stays uniform
|
|
self.assertTrue(torch.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3))
|
|
self.assertTrue(torch.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3))
|
|
|
|
# sharp peaks get higher, valleys get lower
|
|
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
|
|
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())
|
|
|
|
# smooth peaks get lower, valleys get higher
|
|
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
|
|
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())
|
|
|
|
def test_repetition_penalty_dist_process(self):
|
|
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
|
|
|
|
scores = rep_penalty_proc(input_ids, scores.clone())
|
|
|
|
# check that values were correctly changed
|
|
self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) * 2)
|
|
self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) / 2)
|
|
|
|
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) / 2)
|
|
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) / 2)
|
|
|
|
def test_encoder_repetition_penalty_dist_process(self):
|
|
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
|
|
vocab_size = 10
|
|
|
|
scores = self._get_uniform_logits(batch_size=2, length=vocab_size)
|
|
|
|
# give values special values
|
|
scores[0, 0] = -(1 / vocab_size)
|
|
scores[1, 5] = 4 / vocab_size
|
|
|
|
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)
|
|
|
|
scores = rep_penalty_proc(input_ids, scores.clone())
|
|
|
|
# check that values were correctly changed
|
|
self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) / 2)
|
|
self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) * 2)
|
|
|
|
self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) * 2)
|
|
self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) * 2)
|
|
|
|
# check that values not in the encoder ids were NOT changed
|
|
self.assertAlmostEqual(scores[0, 2].item(), (1 / vocab_size))
|
|
self.assertAlmostEqual(scores[1, 2].item(), (1 / vocab_size))
|
|
|
|
def test_top_k_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create ramp distribution
|
|
ramp_logits = (
|
|
torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
|
|
)
|
|
ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size
|
|
|
|
top_k_warp = TopKLogitsWarper(3)
|
|
|
|
scores = top_k_warp(input_ids, ramp_logits)
|
|
|
|
# check that correct tokens are filtered
|
|
self.assertListEqual(torch.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
|
|
self.assertListEqual(torch.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])
|
|
|
|
# check special cases
|
|
length = 5
|
|
|
|
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
|
|
top_k_warp_safety_check = TopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
|
|
|
|
scores = top_k_warp_safety_check(input_ids, logits)
|
|
# uniform dist is not changed
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
|
|
|
|
ramp_logits = torch.arange(length, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
|
|
scores = top_k_warp_safety_check(input_ids, ramp_logits)
|
|
|
|
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_top_p_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
top_p_warp = TopPLogitsWarper(0.8)
|
|
filtered_dist = torch.exp(top_p_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to keep min num values so that sum is >= top_p
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float
|
|
)
|
|
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
top_p_warp = TopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = top_p_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
|
|
|
|
def test_typical_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.97, 0.01, 0.01, 0.01], [0.4, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
typical_warp = TypicalLogitsWarper(0.5)
|
|
filtered_dist = torch.exp(typical_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to keep min num values so that sum is >= 0.7
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.97, 0.0, 0.0, 0.0], [0.0, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
|
|
|
|
# check special cases
|
|
length = 5
|
|
|
|
logits = self._get_uniform_logits(batch_size=batch_size, length=length)
|
|
typical_warp_safety_check = TypicalLogitsWarper(mass=0.5, filter_value=0.0, min_tokens_to_keep=3)
|
|
|
|
scores = typical_warp_safety_check(input_ids, logits)
|
|
# uniform dist is not changed
|
|
self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
typical_warp = TypicalLogitsWarper(0.7, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = typical_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_epsilon_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor(
|
|
[[0.87, 0.099, 0.001, 0.03], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
)
|
|
|
|
epsilon_warp = EpsilonLogitsWarper(0.1)
|
|
filtered_dist = torch.exp(epsilon_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to only keep values with proba >= 0.1
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.87, 0, 0, 0], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
|
|
)
|
|
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
epsilon_warp = EpsilonLogitsWarper(5e-2, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = epsilon_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep 3 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])
|
|
|
|
def test_eta_dist_warper(self):
|
|
input_ids = None
|
|
vocab_size = 10
|
|
batch_size = 2
|
|
|
|
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
|
|
dist = torch.log(
|
|
torch.tensor([[0.0, 0.1, 0.8, 0.1], [0.01, 0.04, 0.9, 0.05]], device=torch_device, dtype=torch.float)
|
|
)
|
|
|
|
eta_warp = EtaLogitsWarper(0.0625)
|
|
filtered_dist = torch.exp(eta_warp(input_ids, dist))
|
|
|
|
# dist should be filtered to only keep values with proba >= min(0.0625, sqrt(0.0625) * e^-H(p))
|
|
# min(0.0625, 0.1320) is the cutoff for the first row and min(0.0625, 0.1644) is for the second
|
|
# where H is the entropy function and p is the probability vector.
|
|
# exp (-inf) => 0
|
|
EXPECTED_FILTERED_DIST = torch.tensor(
|
|
[[0.0, 0.1, 0.8, 0.1], [0.0, 0.0, 0.9, 0.0]], device=torch_device, dtype=torch.float
|
|
)
|
|
self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
|
|
|
|
# check edge cases with negative and extreme logits
|
|
ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
|
|
batch_size, 1
|
|
) - (vocab_size // 2)
|
|
|
|
# make ramp_logits more extreme
|
|
ramp_logits[1] = ramp_logits[1] * 100.0
|
|
|
|
# make sure at least 2 tokens are kept
|
|
eta_warp = EtaLogitsWarper(0.1, min_tokens_to_keep=2, filter_value=0.0)
|
|
filtered_dist = eta_warp(input_ids, ramp_logits)
|
|
|
|
# first batch should keep 2 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
|
|
self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])
|
|
|
|
def test_no_repeat_ngram_dist_processor(self):
|
|
vocab_size = 3
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[1, 1, 2, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = NoRepeatNGramLogitsProcessor(2)
|
|
no_repeat_proc_3_gram = NoRepeatNGramLogitsProcessor(3)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
|
|
|
|
# 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
|
|
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [True, False, False]])
|
|
|
|
# 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(), [[False, False, False], [True, False, False]]
|
|
)
|
|
|
|
def test_encoder_no_repeat_ngram_dist_processor(self):
|
|
vocab_size = 3
|
|
num_beams = 2
|
|
batch_size = 1
|
|
|
|
encoder_input_ids = torch.tensor([1, 2, 1, 1], device=torch_device, dtype=torch.long)
|
|
|
|
input_ids = torch.tensor([[1, 2, 1], [8, 0, 2]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
|
|
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
|
|
|
|
# 2-gram would forbid 1st and 2nd token at 1st beam and 1st token (0) at 2nd beam
|
|
self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [False, True, False]])
|
|
|
|
# 3-gram would forbid 1st token at 1st beam and no token at 2nd beam
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(), [[False, True, False], [False, False, False]]
|
|
)
|
|
|
|
# Batched input
|
|
vocab_size = 3
|
|
num_beams = 2
|
|
batch_size = 2
|
|
encoder_input_ids = torch.tensor([[1, 2, 1, 1], [0, 0, 2, 1]], device=torch_device, dtype=torch.long)
|
|
|
|
input_ids = torch.tensor([[1, 2, 1], [1, 0, 2], [0, 0, 0], [0, 2, 2]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)
|
|
|
|
no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
|
|
no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)
|
|
|
|
filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
|
|
filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())
|
|
|
|
# 2gram
|
|
# Batch 1
|
|
# - Beam 1: tokens (1, 2) forbidden
|
|
# - Beam 2: tokens (1) forbidden
|
|
# Batch 2
|
|
# - Beam 1: tokens (0, 2) forbidden
|
|
# - Beam 2: tokens (1) forbidden
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_2_gram).tolist(),
|
|
[[False, True, True], [False, True, False], [True, False, True], [False, True, False]],
|
|
)
|
|
|
|
# Batch 1
|
|
# - Beam 1: tokens (1) forbidden
|
|
# - Beam 2: tokens () forbidden
|
|
# Batch 2
|
|
# - Beam 1: tokens (2) forbidden
|
|
# - Beam 2: tokens () forbidden
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores_3_gram).tolist(),
|
|
[[False, True, False], [False, False, False], [False, False, True], [False, False, False]],
|
|
)
|
|
|
|
def test_no_bad_words_dist_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
eos_token_id = 4
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)
|
|
|
|
filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())
|
|
|
|
# batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
|
|
# batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
|
|
# Note that 5th element cannot be forbidden as it is EOS token
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores).tolist(), [[True, True, False, True, False], [True, True, True, False, False]]
|
|
)
|
|
|
|
# check edge case
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[4]], eos_token_id=eos_token_id)
|
|
filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())
|
|
self.assertTrue(torch.allclose(scores, filtered_scores, atol=1e-3))
|
|
|
|
def test_bias_dist_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
positive_bias = {(1,): 100.0, (4,): 100.0}
|
|
negative_bias = {(1, 0): -100.0, (0, 1, 2): -100.0, (1, 3, 1, 3): -100.0}
|
|
# biases the same termination twice, to ensure we can handle overlapping terminations (it won't have an effect
|
|
# on the test cases, though)
|
|
negative_bias.update({(1, 3, 1, 3, 1, 3): -100.0})
|
|
sequence_bias = {**positive_bias, **negative_bias}
|
|
|
|
# scores = 0 to facilitate checks
|
|
scores = torch.zeros((batch_size, vocab_size), dtype=torch.float, device=torch_device)
|
|
|
|
bias_dist_proc = SequenceBiasLogitsProcessor(sequence_bias=sequence_bias)
|
|
filtered_scores = bias_dist_proc(input_ids, scores.clone())
|
|
|
|
# batch 1: positive bias: tokens (1, 4); negative bias: tokens (0, 3); neutral: tokens (2)
|
|
# batch 2: positive bias: tokens (1, 4); negative bias: tokens (0, 2); neutral: tokens (3)
|
|
self.assertListEqual(
|
|
filtered_scores.tolist(), [[-100.0, 100.0, 0.0, -100.0, 100.0], [-100.0, 100.0, -100.0, 0.0, 100.0]]
|
|
)
|
|
|
|
def test_processor_list(self):
|
|
batch_size = 4
|
|
sequence_length = 10
|
|
vocab_size = 15
|
|
eos_token_id = 0
|
|
|
|
# dummy input_ids and scores
|
|
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
|
|
input_ids_comp = input_ids.clone()
|
|
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_comp = scores.clone()
|
|
|
|
# instantiate all dist processors
|
|
min_dist_proc = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
|
|
temp_dist_warp = TemperatureLogitsWarper(temperature=0.5)
|
|
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
|
|
top_k_warp = TopKLogitsWarper(3)
|
|
top_p_warp = TopPLogitsWarper(0.8)
|
|
no_repeat_proc = NoRepeatNGramLogitsProcessor(2)
|
|
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)
|
|
|
|
# no processor list
|
|
scores = min_dist_proc(input_ids, scores)
|
|
scores = temp_dist_warp(input_ids, scores)
|
|
scores = rep_penalty_proc(input_ids, scores)
|
|
scores = top_k_warp(input_ids, scores)
|
|
scores = top_p_warp(input_ids, scores)
|
|
scores = no_repeat_proc(input_ids, scores)
|
|
scores = no_bad_words_dist_proc(input_ids, scores)
|
|
|
|
# with processor list
|
|
processor = LogitsProcessorList(
|
|
[
|
|
min_dist_proc,
|
|
temp_dist_warp,
|
|
rep_penalty_proc,
|
|
top_k_warp,
|
|
top_p_warp,
|
|
no_repeat_proc,
|
|
no_bad_words_dist_proc,
|
|
]
|
|
)
|
|
scores_comp = processor(input_ids, scores_comp)
|
|
|
|
# scores should be equal
|
|
self.assertTrue(torch.allclose(scores, scores_comp, atol=1e-3))
|
|
|
|
# input_ids should never be changed
|
|
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
|
|
|
|
def test_prefix_constrained_logits_processor(self):
|
|
vocab_size = 5
|
|
batch_size = 2
|
|
|
|
input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
|
|
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
|
|
return [[0, 1], [2, 3]][batch_id]
|
|
|
|
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, 1)
|
|
|
|
filtered_scores = prefix_constrained_logits_proc(input_ids, scores.clone())
|
|
|
|
# batch 1: 1st, 2nd (0, 1) token are allowed
|
|
# batch 2: 3rd, 4th (2, 3) token are allowed
|
|
self.assertListEqual(
|
|
torch.isinf(filtered_scores).tolist(), [[False, False, True, True, True], [True, True, False, False, True]]
|
|
)
|
|
|
|
def test_hamming_diversity(self):
|
|
vocab_size = 4
|
|
num_beams = 2
|
|
num_beam_groups = 2
|
|
|
|
scores = self._get_uniform_logits(num_beams, vocab_size)
|
|
# batch_idx = 0 -> index batch_idx * num_beam_groups -> idx = 0 * 2 = 0 -> penalises tokens 1
|
|
# batch_idx = 1 -> index batch_idx * num_beam_groups -> idx = 1 * 2 = 2 -> penalises tokens 1
|
|
current_tokens = torch.tensor([0, 3, 1, 2], device=torch_device, dtype=torch.long)
|
|
|
|
diversity_logits_processor = HammingDiversityLogitsProcessor(
|
|
diversity_penalty=1.0, num_beams=num_beams, num_beam_groups=num_beam_groups
|
|
)
|
|
|
|
processed_scores = diversity_logits_processor(None, scores, current_tokens, 1)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
processed_scores[0], torch.tensor([-0.7500, 0.2500, 0.2500, 0.2500], device=torch_device), atol=1e-3
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
processed_scores[1], torch.tensor([0.2500, -0.7500, 0.2500, 0.2500], device=torch_device), atol=1e-3
|
|
)
|
|
)
|
|
|
|
def test_forced_bos_token_logits_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
bos_token_id = 0
|
|
|
|
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
|
|
|
|
# check that all scores are -inf except the bos_token_id score
|
|
input_ids = ids_tensor((batch_size, 1), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores = logits_processor(input_ids, scores)
|
|
self.assertTrue(torch.isneginf(scores[:, bos_token_id + 1 :]).all())
|
|
self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0]) # score for bos_token_id shold be zero
|
|
|
|
# check that bos_token_id is not forced if current length is greater than 1
|
|
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores = logits_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores).any())
|
|
|
|
def test_forced_eos_token_logits_processor(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
max_length = 5
|
|
|
|
logits_processor = ForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
|
|
|
|
# check that all scores are -inf except the eos_token_id when max_length-1 is reached
|
|
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores = logits_processor(input_ids, scores)
|
|
self.assertTrue(torch.isneginf(scores[:, eos_token_id + 1 :]).all())
|
|
self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0]) # score for eos_token_id should be zero
|
|
|
|
# check that eos_token_id is not forced if max_length-1 is not reached
|
|
input_ids = ids_tensor((batch_size, 3), vocab_size=20)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores = logits_processor(input_ids, scores)
|
|
self.assertFalse(torch.isinf(scores).any())
|
|
|
|
def test_remove_nan_inf_logits_processor(self):
|
|
scores = torch.tensor(
|
|
[[0.0, 0.7, 0.8, float("nan")], [0.1, float("inf"), 0.3, float("-inf")]], device=torch_device
|
|
)
|
|
input_ids = ids_tensor((2, 4), vocab_size=20)
|
|
|
|
logits_processor = InfNanRemoveLogitsProcessor()
|
|
|
|
scores = logits_processor(input_ids, scores)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
scores,
|
|
torch.tensor(
|
|
[[0.0, 0.7, 0.8, 0.0], [0.1, torch.finfo(scores.dtype).max, 0.3, float("-inf")]],
|
|
device=torch_device,
|
|
),
|
|
atol=1e-6,
|
|
)
|
|
)
|
|
|
|
def test_exponential_decay_length_penalty(self):
|
|
vocab_size = 20
|
|
batch_size = 4
|
|
eos_token_id = 0
|
|
|
|
penalty_start = 5
|
|
penalty_factor = 1.1
|
|
|
|
input_ids = ids_tensor((batch_size, 2), vocab_size=vocab_size)
|
|
input_ids_seq_length = input_ids.shape[-1]
|
|
|
|
length_decay_processor = ExponentialDecayLengthPenalty(
|
|
exponential_decay_length_penalty=(penalty_start, penalty_factor),
|
|
eos_token_id=eos_token_id,
|
|
input_ids_seq_length=input_ids_seq_length,
|
|
)
|
|
|
|
# check that penalty is not applied before start
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_before_start = torch.clone(scores) # clone scores as precessor updates them inplace
|
|
scores_before_start = length_decay_processor(input_ids, scores_before_start)
|
|
self.assertListEqual(scores_before_start[:, eos_token_id].tolist(), scores[:, eos_token_id].tolist())
|
|
|
|
# check that penalty is applied after start
|
|
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
|
|
scores = self._get_uniform_logits(batch_size, vocab_size)
|
|
scores_after_start = torch.clone(scores) # clone scores as precessor updates them inplace
|
|
scores_after_start = length_decay_processor(input_ids, scores_after_start)
|
|
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
|
|
|
|
# check the penalty increases negative scores
|
|
input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
|
|
scores = torch.neg(self._get_uniform_logits(batch_size, vocab_size))
|
|
scores_after_start = torch.clone(scores) # clone scores as precessor updates them inplace
|
|
scores_after_start = length_decay_processor(input_ids, scores_after_start)
|
|
self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())
|
|
|
|
def test_normalization(self):
|
|
input_ids = None
|
|
|
|
scores = torch.tensor(
|
|
[[-23.18, -29.96, -43.54, 47.77], [-33.58, -26.87, -32.96, 22.51]], device=torch_device, dtype=torch.float
|
|
)
|
|
|
|
logit_normalization = LogitNormalization()
|
|
normalized_scores = logit_normalization(input_ids, scores).exp()
|
|
|
|
ones = torch.ones(scores.shape[0], device=torch_device, dtype=torch.float)
|
|
self.assertTrue(normalized_scores.sum(dim=-1).allclose(ones))
|
|
|
|
self.assertTrue(normalized_scores.allclose(scores.softmax(dim=-1)))
|
|
|
|
def test_classifier_free_guidance(self):
|
|
class Namespace(dict):
|
|
pass
|
|
|
|
logits_uncond = torch.tensor([[[1.0, 0, 1.5]]])
|
|
logits_cond = torch.tensor([[[1.0, 1.0, 1.0]]])
|
|
|
|
def dummy_model(input_ids, attention_mask, use_cache=True, past_key_values=None):
|
|
out = Namespace()
|
|
out.logits = logits_uncond
|
|
out.past_key_values = None
|
|
return out
|
|
|
|
def lsm(x):
|
|
return torch.nn.functional.log_softmax(x, dim=-1)
|
|
|
|
# explicit unconditional prompt + attention mask
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(
|
|
1.5, dummy_model, input_ids, torch.ones_like(input_ids, dtype=torch.long)
|
|
)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|
|
|
|
# explicit unconditional prompt
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model, input_ids)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|
|
|
|
# all implicit
|
|
input_ids = torch.LongTensor([[0]])
|
|
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model)
|
|
out = cfg(input_ids, logits_cond)[0, -1]
|
|
|
|
res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]
|
|
|
|
self.assertAlmostEqual(out[0].item(), res[0].item())
|
|
self.assertAlmostEqual(out[1].item(), res[1].item())
|
|
self.assertAlmostEqual(out[2].item(), res[2].item())
|