transformers/tests/test_feature_extraction_common.py
Yih-Dar 6aae59d0b5
Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 10:30:20 +02:00

217 lines
8.8 KiB
Python

# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
from transformers.utils import is_torch_available, is_vision_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
if is_torch_available():
import numpy as np
import torch
if is_vision_available():
from PIL import Image
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(feature_extract_tester.batch_size):
image_inputs.append(
np.random.randint(
255,
size=(
feature_extract_tester.num_channels,
feature_extract_tester.max_resolution,
feature_extract_tester.max_resolution,
),
dtype=np.uint8,
)
)
else:
image_inputs = []
# To avoid getting image width/height 0
min_resolution = feature_extract_tester.min_resolution
if getattr(feature_extract_tester, "size_divisor", None):
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(feature_extract_tester.size_divisor, min_resolution)
for i in range(feature_extract_tester.batch_size):
width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
image_inputs.append(
np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(x) for x in image_inputs]
return image_inputs
class FeatureExtractionSavingTestMixin:
def test_feat_extract_to_json_string(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
obj = json.loads(feat_extract.to_json_string())
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key], value)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())
def test_init_without_params(self):
feat_extract = self.feature_extraction_class()
self.assertIsNotNone(feat_extract)
class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = []
response_mock.raise_for_status.side_effect = HTTPError
# Download this model to make sure it's in the cache.
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# This check we did call the fake head request
mock_head.assert_called()
@is_staging_test
class FeatureExtractorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
set_access_token(TOKEN)
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-feature-extractor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
except HTTPError:
pass
def test_push_to_hub(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
os.path.join(tmp_dir, "test-feature-extractor"), push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_in_organization(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
os.path.join(tmp_dir, "test-feature-extractor-org"),
push_to_hub=True,
use_auth_token=self._token,
organization="valid_org",
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_dynamic_feature_extractor(self):
CustomFeatureExtractor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-feature-extractor", use_auth_token=self._token)
feature_extractor.save_pretrained(tmp_dir)
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
)
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
repo.push_to_hub()
new_feature_extractor = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
)
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")