mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* debugging improvements
* add debugging details
* add more debugging details
* debug more
* clean up layers + output
* add summary json file
* cleanup
* copies 👀
* remove hooks + add documentation
* draft a small test, why not
* respect the format (respect it)
* fixup imports
* nit
* add tests and configurable pruning of layers
123 lines
4.9 KiB
Python
123 lines
4.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.model_debugging_utils import model_addition_debugger_context
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
class ToyModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.embed = nn.Embedding(10, 4)
|
|
self.linear_1 = nn.Linear(4, 8)
|
|
self.linear_2 = nn.Linear(8, 2)
|
|
self.act = nn.ReLU()
|
|
|
|
def forward(self, input_ids: str):
|
|
hidden_states = self.embed(input_ids).mean(dim=1)
|
|
hidden_states = self.act(self.linear_1(hidden_states))
|
|
return self.linear_2(hidden_states)
|
|
|
|
class TestModelAdditionDebugger(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model = ToyModel()
|
|
self.inputs = {"input_ids": torch.randint(0, 10, (1, 3))}
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
|
|
def test_debugger_outputs(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
with model_addition_debugger_context(self.model, debug_path=str(tmpdir)):
|
|
_ = self.model.forward(**self.inputs)
|
|
|
|
base = f"{self.model.__class__.__name__}_debug_tree"
|
|
summary = Path(os.path.join(tmpdir, f"{base}_SUMMARY.json"))
|
|
full = Path(os.path.join(tmpdir, f"{base}_FULL_TENSORS.json"))
|
|
self.assertTrue(os.path.isfile(summary) and os.path.isfile(full))
|
|
data = json.loads(summary.read_text())
|
|
self.assertTrue({"module_path", "inputs", "children"} <= data.keys())
|
|
self.assertTrue(data["children"])
|
|
|
|
class ToyLayer(nn.Module):
|
|
def __init__(self, layer_index):
|
|
super().__init__()
|
|
self.layer_index = layer_index
|
|
self.layer_operation = nn.Linear(4, 4)
|
|
|
|
def forward(self, hidden_states):
|
|
return self.layer_operation(hidden_states)
|
|
|
|
class ToyModelWithLayers(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_proj = nn.Linear(4, 4)
|
|
self.layers = nn.ModuleList([ToyLayer(layer_index) for layer_index in range(6)])
|
|
self.output_proj = nn.Linear(4, 2)
|
|
|
|
def forward(self, x):
|
|
x = self.input_proj(x)
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
return self.output_proj(x)
|
|
|
|
class TestModelWithLayers(unittest.TestCase):
|
|
def setUp(self):
|
|
self.inputs = {"input_ids": torch.randint(0, 10, (1, 3))}
|
|
self.model_with_layers = ToyModelWithLayers()
|
|
self.dense_input = {"x": torch.randn(1, 4)}
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
|
|
def test_layer_pruning_behavior(self):
|
|
# No pruning: expect all 6 layers
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
with model_addition_debugger_context(self.model_with_layers, debug_path=tmpdir, do_prune_layers=False):
|
|
_ = self.model_with_layers(**self.dense_input)
|
|
|
|
summary_path = os.path.join(tmpdir, "ToyModelWithLayers_debug_tree_SUMMARY.json")
|
|
with open(summary_path) as f:
|
|
data = json.load(f)
|
|
self.assertEqual(set(data.keys()), {"module_path", "inputs", "children"})
|
|
for layer_index in range(6):
|
|
self.assertEqual(
|
|
data["children"][layer_index + 1]["module_path"],
|
|
f"ToyModelWithLayers.layers.{int(layer_index)}",
|
|
)
|
|
|
|
# Pruning: expect only 2 layers (0 and 5)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
with model_addition_debugger_context(self.model_with_layers, debug_path=tmpdir, do_prune_layers=True):
|
|
_ = self.model_with_layers(**self.dense_input)
|
|
|
|
summary_path = os.path.join(tmpdir, "ToyModelWithLayers_debug_tree_SUMMARY.json")
|
|
with open(summary_path) as f:
|
|
data = json.load(f)
|
|
self.assertEqual(set(data.keys()), {"module_path", "inputs", "children"})
|
|
self.assertEqual(data["children"][1]["module_path"], "ToyModelWithLayers.layers.0")
|
|
self.assertEqual(data["children"][2]["module_path"], "ToyModelWithLayers.layers.5")
|