mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00
977 lines
40 KiB
Python
977 lines
40 KiB
Python
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import inspect
|
|
import json
|
|
import os
|
|
import random
|
|
import re
|
|
import unittest
|
|
from dataclasses import fields, is_dataclass
|
|
from pathlib import Path
|
|
from textwrap import dedent
|
|
from typing import get_args
|
|
|
|
from huggingface_hub import (
|
|
AudioClassificationInput,
|
|
AutomaticSpeechRecognitionInput,
|
|
DepthEstimationInput,
|
|
ImageClassificationInput,
|
|
ImageSegmentationInput,
|
|
ImageToTextInput,
|
|
ObjectDetectionInput,
|
|
QuestionAnsweringInput,
|
|
VideoClassificationInput,
|
|
ZeroShotImageClassificationInput,
|
|
)
|
|
|
|
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
|
|
from transformers.pipelines import (
|
|
AudioClassificationPipeline,
|
|
AutomaticSpeechRecognitionPipeline,
|
|
DepthEstimationPipeline,
|
|
ImageClassificationPipeline,
|
|
ImageSegmentationPipeline,
|
|
ImageToTextPipeline,
|
|
ObjectDetectionPipeline,
|
|
QuestionAnsweringPipeline,
|
|
VideoClassificationPipeline,
|
|
ZeroShotImageClassificationPipeline,
|
|
)
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
require_av,
|
|
require_pytesseract,
|
|
require_timm,
|
|
require_torch,
|
|
require_torch_or_tf,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import direct_transformers_import, logging
|
|
|
|
from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
|
|
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
|
|
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
|
|
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
|
|
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
|
|
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
|
|
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
|
|
from .pipelines.test_pipelines_image_feature_extraction import ImageFeatureExtractionPipelineTests
|
|
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
|
|
from .pipelines.test_pipelines_image_text_to_text import ImageTextToTextPipelineTests
|
|
from .pipelines.test_pipelines_image_to_image import ImageToImagePipelineTests
|
|
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
|
|
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests
|
|
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
|
|
from .pipelines.test_pipelines_question_answering import QAPipelineTests
|
|
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
|
|
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
|
|
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
|
|
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
|
|
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
|
|
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests
|
|
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
|
|
from .pipelines.test_pipelines_translation import TranslationPipelineTests
|
|
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
|
|
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
|
|
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
|
|
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
|
|
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
|
|
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests
|
|
|
|
|
|
pipeline_test_mapping = {
|
|
"audio-classification": {"test": AudioClassificationPipelineTests},
|
|
"automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
|
|
"depth-estimation": {"test": DepthEstimationPipelineTests},
|
|
"document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
|
|
"feature-extraction": {"test": FeatureExtractionPipelineTests},
|
|
"fill-mask": {"test": FillMaskPipelineTests},
|
|
"image-classification": {"test": ImageClassificationPipelineTests},
|
|
"image-feature-extraction": {"test": ImageFeatureExtractionPipelineTests},
|
|
"image-segmentation": {"test": ImageSegmentationPipelineTests},
|
|
"image-text-to-text": {"test": ImageTextToTextPipelineTests},
|
|
"image-to-image": {"test": ImageToImagePipelineTests},
|
|
"image-to-text": {"test": ImageToTextPipelineTests},
|
|
"mask-generation": {"test": MaskGenerationPipelineTests},
|
|
"object-detection": {"test": ObjectDetectionPipelineTests},
|
|
"question-answering": {"test": QAPipelineTests},
|
|
"summarization": {"test": SummarizationPipelineTests},
|
|
"table-question-answering": {"test": TQAPipelineTests},
|
|
"text2text-generation": {"test": Text2TextGenerationPipelineTests},
|
|
"text-classification": {"test": TextClassificationPipelineTests},
|
|
"text-generation": {"test": TextGenerationPipelineTests},
|
|
"text-to-audio": {"test": TextToAudioPipelineTests},
|
|
"token-classification": {"test": TokenClassificationPipelineTests},
|
|
"translation": {"test": TranslationPipelineTests},
|
|
"video-classification": {"test": VideoClassificationPipelineTests},
|
|
"visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
|
|
"zero-shot": {"test": ZeroShotClassificationPipelineTests},
|
|
"zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
|
|
"zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
|
|
"zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
|
|
}
|
|
|
|
task_to_pipeline_and_spec_mapping = {
|
|
# Adding a task to this list will cause its pipeline input signature to be checked against the corresponding
|
|
# task spec in the HF Hub
|
|
"audio-classification": (AudioClassificationPipeline, AudioClassificationInput),
|
|
"automatic-speech-recognition": (AutomaticSpeechRecognitionPipeline, AutomaticSpeechRecognitionInput),
|
|
"depth-estimation": (DepthEstimationPipeline, DepthEstimationInput),
|
|
"image-classification": (ImageClassificationPipeline, ImageClassificationInput),
|
|
"image-segmentation": (ImageSegmentationPipeline, ImageSegmentationInput),
|
|
"image-to-text": (ImageToTextPipeline, ImageToTextInput),
|
|
"object-detection": (ObjectDetectionPipeline, ObjectDetectionInput),
|
|
"question-answering": (QuestionAnsweringPipeline, QuestionAnsweringInput),
|
|
"video-classification": (VideoClassificationPipeline, VideoClassificationInput),
|
|
"zero-shot-image-classification": (ZeroShotImageClassificationPipeline, ZeroShotImageClassificationInput),
|
|
}
|
|
|
|
for task, task_info in pipeline_test_mapping.items():
|
|
test = task_info["test"]
|
|
task_info["mapping"] = {
|
|
"pt": getattr(test, "model_mapping", None),
|
|
"tf": getattr(test, "tf_model_mapping", None),
|
|
}
|
|
|
|
|
|
# The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub.
|
|
# For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of
|
|
# `utils/create_dummy_models.py`.
|
|
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing")
|
|
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing":
|
|
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
|
|
else:
|
|
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json")
|
|
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
|
|
tiny_model_summary = json.load(fp)
|
|
|
|
|
|
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")
|
|
|
|
|
|
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
|
|
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PipelineTesterMixin:
|
|
model_tester = None
|
|
pipeline_model_mapping = None
|
|
supported_frameworks = ["pt", "tf"]
|
|
|
|
def run_task_tests(self, task, torch_dtype="float32"):
|
|
"""Run pipeline tests for a specific `task`
|
|
|
|
Args:
|
|
task (`str`):
|
|
A task name. This should be a key in the mapping `pipeline_test_mapping`.
|
|
torch_dtype (`str`, `optional`, defaults to `'float32'`):
|
|
The torch dtype to use for the model. Can be used for FP16/other precision inference.
|
|
"""
|
|
if task not in self.pipeline_model_mapping:
|
|
self.skipTest(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: `{task}` is not in "
|
|
f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
|
|
)
|
|
|
|
model_architectures = self.pipeline_model_mapping[task]
|
|
if not isinstance(model_architectures, tuple):
|
|
model_architectures = (model_architectures,)
|
|
|
|
# We are going to run tests for multiple model architectures, some of them might be skipped
|
|
# with this flag we are control if at least one model were tested or all were skipped
|
|
at_least_one_model_is_tested = False
|
|
|
|
for model_architecture in model_architectures:
|
|
model_arch_name = model_architecture.__name__
|
|
model_type = model_architecture.config_class.model_type
|
|
|
|
# Get the canonical name
|
|
for _prefix in ["Flax", "TF"]:
|
|
if model_arch_name.startswith(_prefix):
|
|
model_arch_name = model_arch_name[len(_prefix) :]
|
|
break
|
|
|
|
if model_arch_name not in tiny_model_summary:
|
|
continue
|
|
|
|
tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
|
|
|
|
# Sort image processors and feature extractors from tiny-models json file
|
|
image_processor_names = []
|
|
feature_extractor_names = []
|
|
|
|
processor_classes = tiny_model_summary[model_arch_name]["processor_classes"]
|
|
for cls_name in processor_classes:
|
|
if "ImageProcessor" in cls_name:
|
|
image_processor_names.append(cls_name)
|
|
elif "FeatureExtractor" in cls_name:
|
|
feature_extractor_names.append(cls_name)
|
|
|
|
# Processor classes are not in tiny models JSON file, so extract them from the mapping
|
|
# processors are mapped to instance, e.g. "XxxProcessor"
|
|
processor_names = PROCESSOR_MAPPING_NAMES.get(model_type, None)
|
|
if not isinstance(processor_names, (list, tuple)):
|
|
processor_names = [processor_names]
|
|
|
|
commit = None
|
|
if model_arch_name in tiny_model_summary and "sha" in tiny_model_summary[model_arch_name]:
|
|
commit = tiny_model_summary[model_arch_name]["sha"]
|
|
|
|
repo_name = f"tiny-random-{model_arch_name}"
|
|
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
|
|
repo_name = model_arch_name
|
|
|
|
self.run_model_pipeline_tests(
|
|
task,
|
|
repo_name,
|
|
model_architecture,
|
|
tokenizer_names=tokenizer_names,
|
|
image_processor_names=image_processor_names,
|
|
feature_extractor_names=feature_extractor_names,
|
|
processor_names=processor_names,
|
|
commit=commit,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
at_least_one_model_is_tested = True
|
|
|
|
if task in task_to_pipeline_and_spec_mapping:
|
|
pipeline, hub_spec = task_to_pipeline_and_spec_mapping[task]
|
|
compare_pipeline_args_to_hub_spec(pipeline, hub_spec)
|
|
|
|
if not at_least_one_model_is_tested:
|
|
self.skipTest(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find any "
|
|
f"model architecture in the tiny models JSON file for `{task}`."
|
|
)
|
|
|
|
def run_model_pipeline_tests(
|
|
self,
|
|
task,
|
|
repo_name,
|
|
model_architecture,
|
|
tokenizer_names,
|
|
image_processor_names,
|
|
feature_extractor_names,
|
|
processor_names,
|
|
commit,
|
|
torch_dtype="float32",
|
|
):
|
|
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names
|
|
|
|
Args:
|
|
task (`str`):
|
|
A task name. This should be a key in the mapping `pipeline_test_mapping`.
|
|
repo_name (`str`):
|
|
A model repository id on the Hub.
|
|
model_architecture (`type`):
|
|
A subclass of `PretrainedModel` or `PretrainedModel`.
|
|
tokenizer_names (`List[str]`):
|
|
A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
|
|
image_processor_names (`List[str]`):
|
|
A list of names of subclasses of `BaseImageProcessor`.
|
|
feature_extractor_names (`List[str]`):
|
|
A list of names of subclasses of `FeatureExtractionMixin`.
|
|
processor_names (`List[str]`):
|
|
A list of names of subclasses of `ProcessorMixin`.
|
|
commit (`str`):
|
|
The commit hash of the model repository on the Hub.
|
|
torch_dtype (`str`, `optional`, defaults to `'float32'`):
|
|
The torch dtype to use for the model. Can be used for FP16/other precision inference.
|
|
"""
|
|
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
|
|
# `run_pipeline_test`.
|
|
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
|
|
|
|
# If no image processor or feature extractor is found, we still need to test the pipeline with None
|
|
# otherwise for any empty list we might skip all the tests
|
|
tokenizer_names = tokenizer_names or [None]
|
|
image_processor_names = image_processor_names or [None]
|
|
feature_extractor_names = feature_extractor_names or [None]
|
|
processor_names = processor_names or [None]
|
|
|
|
test_cases = [
|
|
{
|
|
"tokenizer_name": tokenizer_name,
|
|
"image_processor_name": image_processor_name,
|
|
"feature_extractor_name": feature_extractor_name,
|
|
"processor_name": processor_name,
|
|
}
|
|
for tokenizer_name in tokenizer_names
|
|
for image_processor_name in image_processor_names
|
|
for feature_extractor_name in feature_extractor_names
|
|
for processor_name in processor_names
|
|
]
|
|
|
|
for test_case in test_cases:
|
|
tokenizer_name = test_case["tokenizer_name"]
|
|
image_processor_name = test_case["image_processor_name"]
|
|
feature_extractor_name = test_case["feature_extractor_name"]
|
|
processor_name = test_case["processor_name"]
|
|
|
|
do_skip_test_case = self.is_pipeline_test_to_skip(
|
|
pipeline_test_class_name,
|
|
model_architecture.config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
)
|
|
|
|
if do_skip_test_case:
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is "
|
|
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
|
|
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor {feature_extractor_name}."
|
|
)
|
|
continue
|
|
|
|
self.run_pipeline_test(
|
|
task,
|
|
repo_name,
|
|
model_architecture,
|
|
tokenizer_name=tokenizer_name,
|
|
image_processor_name=image_processor_name,
|
|
feature_extractor_name=feature_extractor_name,
|
|
processor_name=processor_name,
|
|
commit=commit,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
|
|
def run_pipeline_test(
|
|
self,
|
|
task,
|
|
repo_name,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
commit,
|
|
torch_dtype="float32",
|
|
):
|
|
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name
|
|
|
|
The model will be loaded from a model repository on the Hub.
|
|
|
|
Args:
|
|
task (`str`):
|
|
A task name. This should be a key in the mapping `pipeline_test_mapping`.
|
|
repo_name (`str`):
|
|
A model repository id on the Hub.
|
|
model_architecture (`type`):
|
|
A subclass of `PretrainedModel` or `PretrainedModel`.
|
|
tokenizer_name (`str`):
|
|
The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
|
|
image_processor_name (`str`):
|
|
The name of a subclass of `BaseImageProcessor`.
|
|
feature_extractor_name (`str`):
|
|
The name of a subclass of `FeatureExtractionMixin`.
|
|
processor_name (`str`):
|
|
The name of a subclass of `ProcessorMixin`.
|
|
commit (`str`):
|
|
The commit hash of the model repository on the Hub.
|
|
torch_dtype (`str`, `optional`, defaults to `'float32'`):
|
|
The torch dtype to use for the model. Can be used for FP16/other precision inference.
|
|
"""
|
|
repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}"
|
|
model_type = model_architecture.config_class.model_type
|
|
|
|
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
|
|
repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name)
|
|
|
|
# -------------------- Load model --------------------
|
|
|
|
# TODO: We should check if a model file is on the Hub repo. instead.
|
|
try:
|
|
model = model_architecture.from_pretrained(repo_id, revision=commit)
|
|
except Exception:
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load "
|
|
f"the model from `{repo_id}` with `{model_architecture}`."
|
|
)
|
|
self.skipTest(f"Could not find or load the model from {repo_id} with {model_architecture}.")
|
|
|
|
# -------------------- Load tokenizer --------------------
|
|
|
|
tokenizer = None
|
|
if tokenizer_name is not None:
|
|
tokenizer_class = getattr(transformers_module, tokenizer_name)
|
|
tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit)
|
|
|
|
# -------------------- Load processors --------------------
|
|
|
|
processors = {}
|
|
for key, name in zip(
|
|
["image_processor", "feature_extractor", "processor"],
|
|
[image_processor_name, feature_extractor_name, processor_name],
|
|
):
|
|
if name is not None:
|
|
try:
|
|
# Can fail if some extra dependencies are not installed
|
|
processor_class = getattr(transformers_module, name)
|
|
processor = processor_class.from_pretrained(repo_id, revision=commit)
|
|
processors[key] = processor
|
|
except Exception:
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: "
|
|
f"Could not load the {key} from `{repo_id}` with `{name}`."
|
|
)
|
|
self.skipTest(f"Could not load the {key} from {repo_id} with {name}.")
|
|
|
|
# ---------------------------------------------------------
|
|
|
|
# TODO: Maybe not upload such problematic tiny models to Hub.
|
|
if tokenizer is None and "image_processor" not in processors and "feature_extractor" not in processors:
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load "
|
|
f"any tokenizer / image processor / feature extractor from `{repo_id}`."
|
|
)
|
|
self.skipTest(f"Could not find or load any tokenizer / processor from {repo_id}.")
|
|
|
|
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
|
|
if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, **processors):
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is "
|
|
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
|
|
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`."
|
|
)
|
|
self.skipTest(
|
|
f"Test is known to fail for: model `{model_architecture.__name__}` | tokenizer `{tokenizer_name}` "
|
|
f"| image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`."
|
|
)
|
|
|
|
# validate
|
|
validate_test_components(model, tokenizer)
|
|
|
|
if hasattr(model, "eval"):
|
|
model = model.eval()
|
|
|
|
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
|
|
# `run_pipeline_test`.
|
|
task_test = pipeline_test_mapping[task]["test"]()
|
|
|
|
pipeline, examples = task_test.get_test_pipeline(model, tokenizer, **processors, torch_dtype=torch_dtype)
|
|
if pipeline is None:
|
|
# The test can disable itself, but it should be very marginal
|
|
# Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
|
|
logger.warning(
|
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not get the "
|
|
"pipeline for testing."
|
|
)
|
|
self.skipTest(reason="Could not get the pipeline for testing.")
|
|
|
|
task_test.run_pipeline_test(pipeline, examples)
|
|
|
|
def run_batch_test(pipeline, examples):
|
|
# Need to copy because `Conversation` are stateful
|
|
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
|
|
return # No batching for this and it's OK
|
|
|
|
# 10 examples with batch size 4 means there needs to be a unfinished batch
|
|
# which is important for the unbatcher
|
|
def data(n):
|
|
for _ in range(n):
|
|
# Need to copy because Conversation object is mutated
|
|
yield copy.deepcopy(random.choice(examples))
|
|
|
|
out = []
|
|
for item in pipeline(data(10), batch_size=4):
|
|
out.append(item)
|
|
self.assertEqual(len(out), 10)
|
|
|
|
run_batch_test(pipeline, examples)
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_audio_classification(self):
|
|
self.run_task_tests(task="audio-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_audio_classification_fp16(self):
|
|
self.run_task_tests(task="audio-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_automatic_speech_recognition(self):
|
|
self.run_task_tests(task="automatic-speech-recognition")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_automatic_speech_recognition_fp16(self):
|
|
self.run_task_tests(task="automatic-speech-recognition", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_depth_estimation(self):
|
|
self.run_task_tests(task="depth-estimation")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_depth_estimation_fp16(self):
|
|
self.run_task_tests(task="depth-estimation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_pytesseract
|
|
@require_torch
|
|
@require_vision
|
|
def test_pipeline_document_question_answering(self):
|
|
self.run_task_tests(task="document-question-answering")
|
|
|
|
@is_pipeline_test
|
|
@require_pytesseract
|
|
@require_torch
|
|
@require_vision
|
|
def test_pipeline_document_question_answering_fp16(self):
|
|
self.run_task_tests(task="document-question-answering", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_feature_extraction(self):
|
|
self.run_task_tests(task="feature-extraction")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_feature_extraction_fp16(self):
|
|
self.run_task_tests(task="feature-extraction", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_fill_mask(self):
|
|
self.run_task_tests(task="fill-mask")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_fill_mask_fp16(self):
|
|
self.run_task_tests(task="fill-mask", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch_or_tf
|
|
@require_vision
|
|
def test_pipeline_image_classification(self):
|
|
self.run_task_tests(task="image-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_classification_fp16(self):
|
|
self.run_task_tests(task="image-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_image_segmentation(self):
|
|
self.run_task_tests(task="image-segmentation")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_image_segmentation_fp16(self):
|
|
self.run_task_tests(task="image-segmentation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_text_to_text(self):
|
|
self.run_task_tests(task="image-text-to-text")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_text_to_text_fp16(self):
|
|
self.run_task_tests(task="image-text-to-text", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
def test_pipeline_image_to_text(self):
|
|
self.run_task_tests(task="image-to-text")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_to_text_fp16(self):
|
|
self.run_task_tests(task="image-to-text", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_timm
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_feature_extraction(self):
|
|
self.run_task_tests(task="image-feature-extraction")
|
|
|
|
@is_pipeline_test
|
|
@require_timm
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_image_feature_extraction_fp16(self):
|
|
self.run_task_tests(task="image-feature-extraction", torch_dtype="float16")
|
|
|
|
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_mask_generation(self):
|
|
self.run_task_tests(task="mask-generation")
|
|
|
|
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_mask_generation_fp16(self):
|
|
self.run_task_tests(task="mask-generation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_object_detection(self):
|
|
self.run_task_tests(task="object-detection")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
def test_pipeline_object_detection_fp16(self):
|
|
self.run_task_tests(task="object-detection", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_question_answering(self):
|
|
self.run_task_tests(task="question-answering")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_question_answering_fp16(self):
|
|
self.run_task_tests(task="question-answering", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_summarization(self):
|
|
self.run_task_tests(task="summarization")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_summarization_fp16(self):
|
|
self.run_task_tests(task="summarization", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_table_question_answering(self):
|
|
self.run_task_tests(task="table-question-answering")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_table_question_answering_fp16(self):
|
|
self.run_task_tests(task="table-question-answering", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_text2text_generation(self):
|
|
self.run_task_tests(task="text2text-generation")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_text2text_generation_fp16(self):
|
|
self.run_task_tests(task="text2text-generation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_text_classification(self):
|
|
self.run_task_tests(task="text-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_text_classification_fp16(self):
|
|
self.run_task_tests(task="text-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch_or_tf
|
|
def test_pipeline_text_generation(self):
|
|
self.run_task_tests(task="text-generation")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_text_generation_fp16(self):
|
|
self.run_task_tests(task="text-generation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_text_to_audio(self):
|
|
self.run_task_tests(task="text-to-audio")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_text_to_audio_fp16(self):
|
|
self.run_task_tests(task="text-to-audio", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_token_classification(self):
|
|
self.run_task_tests(task="token-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_token_classification_fp16(self):
|
|
self.run_task_tests(task="token-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_translation(self):
|
|
self.run_task_tests(task="translation")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_translation_fp16(self):
|
|
self.run_task_tests(task="translation", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch_or_tf
|
|
@require_vision
|
|
@require_av
|
|
def test_pipeline_video_classification(self):
|
|
self.run_task_tests(task="video-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
@require_av
|
|
def test_pipeline_video_classification_fp16(self):
|
|
self.run_task_tests(task="video-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
@require_vision
|
|
def test_pipeline_visual_question_answering(self):
|
|
self.run_task_tests(task="visual-question-answering")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
@require_vision
|
|
def test_pipeline_visual_question_answering_fp16(self):
|
|
self.run_task_tests(task="visual-question-answering", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
def test_pipeline_zero_shot(self):
|
|
self.run_task_tests(task="zero-shot")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_zero_shot_fp16(self):
|
|
self.run_task_tests(task="zero-shot", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_zero_shot_audio_classification(self):
|
|
self.run_task_tests(task="zero-shot-audio-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
def test_pipeline_zero_shot_audio_classification_fp16(self):
|
|
self.run_task_tests(task="zero-shot-audio-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
def test_pipeline_zero_shot_image_classification(self):
|
|
self.run_task_tests(task="zero-shot-image-classification")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_zero_shot_image_classification_fp16(self):
|
|
self.run_task_tests(task="zero-shot-image-classification", torch_dtype="float16")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_zero_shot_object_detection(self):
|
|
self.run_task_tests(task="zero-shot-object-detection")
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_torch
|
|
def test_pipeline_zero_shot_object_detection_fp16(self):
|
|
self.run_task_tests(task="zero-shot-object-detection", torch_dtype="float16")
|
|
|
|
# This contains the test cases to be skipped without model architecture being involved.
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
"""Skip some tests based on the classes or their names without the instantiated objects.
|
|
|
|
This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail.
|
|
"""
|
|
# No fix is required for this case.
|
|
if (
|
|
pipeline_test_case_name == "DocumentQuestionAnsweringPipelineTests"
|
|
and tokenizer_name is not None
|
|
and not tokenizer_name.endswith("Fast")
|
|
):
|
|
# `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer.
|
|
return True
|
|
|
|
return False
|
|
|
|
def is_pipeline_test_to_skip_more(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config,
|
|
model,
|
|
tokenizer,
|
|
image_processor=None,
|
|
feature_extractor=None,
|
|
processor=None,
|
|
): # noqa
|
|
"""Skip some more tests based on the information from the instantiated objects."""
|
|
# No fix is required for this case.
|
|
if (
|
|
pipeline_test_case_name == "QAPipelineTests"
|
|
and tokenizer is not None
|
|
and getattr(tokenizer, "pad_token", None) is None
|
|
and not tokenizer.__class__.__name__.endswith("Fast")
|
|
):
|
|
# `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token.
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def validate_test_components(model, tokenizer):
|
|
# TODO: Move this to tiny model creation script
|
|
# head-specific (within a model type) necessary changes to the config
|
|
# 1. for `BlenderbotForCausalLM`
|
|
if model.__class__.__name__ == "BlenderbotForCausalLM":
|
|
model.config.encoder_no_repeat_ngram_size = 0
|
|
|
|
# TODO: Change the tiny model creation script: don't create models with problematic tokenizers
|
|
# Avoid `IndexError` in embedding layers
|
|
CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
|
|
if tokenizer is not None:
|
|
# Removing `decoder=True` in `get_text_config` can lead to conflicting values e.g. in MusicGen
|
|
config_vocab_size = getattr(model.config.get_text_config(decoder=True), "vocab_size", None)
|
|
# For CLIP-like models
|
|
if config_vocab_size is None:
|
|
if hasattr(model.config, "text_encoder"):
|
|
config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
|
|
if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
|
|
raise ValueError(
|
|
"Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
|
|
)
|
|
|
|
|
|
def get_arg_names_from_hub_spec(hub_spec, first_level=True):
|
|
# This util is used in pipeline tests, to verify that a pipeline's documented arguments
|
|
# match the Hub specification for that task
|
|
arg_names = []
|
|
for field in fields(hub_spec):
|
|
# Recurse into nested fields, but max one level
|
|
if is_dataclass(field.type):
|
|
arg_names.extend([field.name for field in fields(field.type)])
|
|
continue
|
|
# Next, catch nested fields that are part of a Union[], which is usually caused by Optional[]
|
|
for param_type in get_args(field.type):
|
|
if is_dataclass(param_type):
|
|
# Again, recurse into nested fields, but max one level
|
|
arg_names.extend([field.name for field in fields(param_type)])
|
|
break
|
|
else:
|
|
# Finally, this line triggers if it's not a nested field
|
|
arg_names.append(field.name)
|
|
return arg_names
|
|
|
|
|
|
def parse_args_from_docstring_by_indentation(docstring):
|
|
# This util is used in pipeline tests, to extract the argument names from a google-format docstring
|
|
# to compare them against the Hub specification for that task. It uses indentation levels as a primary
|
|
# source of truth, so these have to be correct!
|
|
docstring = dedent(docstring)
|
|
lines_by_indent = [
|
|
(len(line) - len(line.lstrip()), line.strip()) for line in docstring.split("\n") if line.strip()
|
|
]
|
|
args_lineno = None
|
|
args_indent = None
|
|
args_end = None
|
|
for lineno, (indent, line) in enumerate(lines_by_indent):
|
|
if line == "Args:":
|
|
args_lineno = lineno
|
|
args_indent = indent
|
|
continue
|
|
elif args_lineno is not None and indent == args_indent:
|
|
args_end = lineno
|
|
break
|
|
if args_lineno is None:
|
|
raise ValueError("No args block to parse!")
|
|
elif args_end is None:
|
|
args_block = lines_by_indent[args_lineno + 1 :]
|
|
else:
|
|
args_block = lines_by_indent[args_lineno + 1 : args_end]
|
|
outer_indent_level = min(line[0] for line in args_block)
|
|
outer_lines = [line for line in args_block if line[0] == outer_indent_level]
|
|
arg_names = [re.match(r"(\w+)\W", line[1]).group(1) for line in outer_lines]
|
|
return arg_names
|
|
|
|
|
|
def compare_pipeline_args_to_hub_spec(pipeline_class, hub_spec):
|
|
"""
|
|
Compares the docstring of a pipeline class to the fields of the matching Hub input signature class to ensure that
|
|
they match. This guarantees that Transformers pipelines can be used in inference without needing to manually
|
|
refactor or rename inputs.
|
|
"""
|
|
ALLOWED_TRANSFORMERS_ONLY_ARGS = ["timeout"]
|
|
|
|
docstring = inspect.getdoc(pipeline_class.__call__).strip()
|
|
docstring_args = set(parse_args_from_docstring_by_indentation(docstring))
|
|
hub_args = set(get_arg_names_from_hub_spec(hub_spec))
|
|
|
|
# Special casing: We allow the name of this arg to differ
|
|
hub_generate_args = [
|
|
hub_arg for hub_arg in hub_args if hub_arg.startswith("generate") or hub_arg.startswith("generation")
|
|
]
|
|
docstring_generate_args = [
|
|
docstring_arg
|
|
for docstring_arg in docstring_args
|
|
if docstring_arg.startswith("generate") or docstring_arg.startswith("generation")
|
|
]
|
|
if (
|
|
len(hub_generate_args) == 1
|
|
and len(docstring_generate_args) == 1
|
|
and hub_generate_args != docstring_generate_args
|
|
):
|
|
hub_args.remove(hub_generate_args[0])
|
|
docstring_args.remove(docstring_generate_args[0])
|
|
|
|
# Special casing 2: We permit some transformers-only arguments that don't affect pipeline output
|
|
for arg in ALLOWED_TRANSFORMERS_ONLY_ARGS:
|
|
if arg in docstring_args and arg not in hub_args:
|
|
docstring_args.remove(arg)
|
|
|
|
if hub_args != docstring_args:
|
|
error = [f"{pipeline_class.__name__} differs from JS spec {hub_spec.__name__}"]
|
|
matching_args = hub_args & docstring_args
|
|
huggingface_hub_only = hub_args - docstring_args
|
|
transformers_only = docstring_args - hub_args
|
|
if matching_args:
|
|
error.append(f"Matching args: {matching_args}")
|
|
if huggingface_hub_only:
|
|
error.append(f"Huggingface Hub only: {huggingface_hub_only}")
|
|
if transformers_only:
|
|
error.append(f"Transformers only: {transformers_only}")
|
|
raise ValueError("\n".join(error))
|