mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00
210 lines
11 KiB
Python
210 lines
11 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
import black
|
|
|
|
|
|
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
|
sys.path.append(os.path.join(git_repo_path, "utils"))
|
|
|
|
import check_copies # noqa: E402
|
|
|
|
|
|
# This is the reference code that will be used in the tests.
|
|
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
|
|
REFERENCE_CODE = """ def __init__(self, config):
|
|
super().__init__()
|
|
self.transform = BertPredictionHeadTransform(config)
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
|
|
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
|
self.decoder.bias = self.bias
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.decoder(hidden_states)
|
|
return hidden_states
|
|
"""
|
|
|
|
|
|
class CopyCheckTester(unittest.TestCase):
|
|
def setUp(self):
|
|
self.transformer_dir = tempfile.mkdtemp()
|
|
os.makedirs(os.path.join(self.transformer_dir, "models/bert/"))
|
|
check_copies.TRANSFORMER_PATH = self.transformer_dir
|
|
shutil.copy(
|
|
os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"),
|
|
os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"),
|
|
)
|
|
|
|
def tearDown(self):
|
|
check_copies.TRANSFORMER_PATH = "src/transformers"
|
|
shutil.rmtree(self.transformer_dir)
|
|
|
|
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None):
|
|
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
|
|
if overwrite_result is not None:
|
|
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
|
|
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119)
|
|
code = black.format_str(code, mode=mode)
|
|
fname = os.path.join(self.transformer_dir, "new_code.py")
|
|
with open(fname, "w", newline="\n") as f:
|
|
f.write(code)
|
|
if overwrite_result is None:
|
|
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0)
|
|
else:
|
|
check_copies.is_copy_consistent(f.name, overwrite=True)
|
|
with open(fname, "r") as f:
|
|
self.assertTrue(f.read(), expected)
|
|
|
|
def test_find_code_in_transformers(self):
|
|
code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead")
|
|
self.assertEqual(code, REFERENCE_CODE)
|
|
|
|
def test_is_copy_consistent(self):
|
|
# Base copy consistency
|
|
self.check_copy_consistency(
|
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
|
|
"BertLMPredictionHead",
|
|
REFERENCE_CODE + "\n",
|
|
)
|
|
|
|
# With no empty line at the end
|
|
self.check_copy_consistency(
|
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
|
|
"BertLMPredictionHead",
|
|
REFERENCE_CODE,
|
|
)
|
|
|
|
# Copy consistency with rename
|
|
self.check_copy_consistency(
|
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
|
|
"TestModelLMPredictionHead",
|
|
re.sub("Bert", "TestModel", REFERENCE_CODE),
|
|
)
|
|
|
|
# Copy consistency with a really long name
|
|
long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
|
|
self.check_copy_consistency(
|
|
f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}",
|
|
f"{long_class_name}LMPredictionHead",
|
|
re.sub("Bert", long_class_name, REFERENCE_CODE),
|
|
)
|
|
|
|
# Copy consistency with overwrite
|
|
self.check_copy_consistency(
|
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
|
|
"TestModelLMPredictionHead",
|
|
REFERENCE_CODE,
|
|
overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE),
|
|
)
|
|
|
|
def test_convert_to_localized_md(self):
|
|
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"]
|
|
|
|
md_list = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
|
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
|
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
|
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."
|
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"
|
|
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
|
|
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"
|
|
" method has been applied to compress GPT2 into"
|
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
|
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
|
|
" Multilingual BERT into"
|
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
|
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"
|
|
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"
|
|
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"
|
|
" Luong, Quoc V. Le, Christopher D. Manning."
|
|
)
|
|
localized_md_list = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
|
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
|
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
|
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
|
|
)
|
|
converted_md_list_sample = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
|
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
|
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
|
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."
|
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"
|
|
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
|
|
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"
|
|
" method has been applied to compress GPT2 into"
|
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
|
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
|
|
" Multilingual BERT into"
|
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
|
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"
|
|
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"
|
|
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"
|
|
" Christopher D. Manning 发布。\n"
|
|
)
|
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
|
|
md_list, localized_md_list, localized_readme["format_model_list"]
|
|
)
|
|
|
|
self.assertFalse(num_models_equal)
|
|
self.assertEqual(converted_md_list, converted_md_list_sample)
|
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
|
|
md_list, converted_md_list, localized_readme["format_model_list"]
|
|
)
|
|
|
|
# Check whether the number of models is equal to README.md after conversion.
|
|
self.assertTrue(num_models_equal)
|
|
|
|
link_changed_md_list = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
|
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
|
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
|
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."
|
|
)
|
|
link_unchanged_md_list = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"
|
|
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
|
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
|
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
|
|
)
|
|
converted_md_list_sample = (
|
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
|
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
|
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
|
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
|
|
)
|
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
|
|
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"]
|
|
)
|
|
|
|
# Check if the model link is synchronized.
|
|
self.assertEqual(converted_md_list, converted_md_list_sample)
|