mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
637 lines
27 KiB
Python
637 lines
27 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT finetuning runner."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import csv
|
|
import os
|
|
import logging
|
|
import argparse
|
|
import random
|
|
from tqdm import tqdm, trange
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from pytorch_pretrained_bert.tokenization import BertTokenizer
|
|
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
|
|
from pytorch_pretrained_bert.optimization import BertAdam
|
|
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
|
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt = '%m/%d/%Y %H:%M:%S',
|
|
level = logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class InputExample(object):
|
|
"""A single training/test example for simple sequence classification."""
|
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None):
|
|
"""Constructs a InputExample.
|
|
|
|
Args:
|
|
guid: Unique id for the example.
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
sequence tasks, only this sequence must be specified.
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
Only must be specified for sequence pair tasks.
|
|
label: (Optional) string. The label of the example. This should be
|
|
specified for train and dev examples, but not for test examples.
|
|
"""
|
|
self.guid = guid
|
|
self.text_a = text_a
|
|
self.text_b = text_b
|
|
self.label = label
|
|
|
|
|
|
class InputFeatures(object):
|
|
"""A single set of features of data."""
|
|
|
|
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
|
self.input_ids = input_ids
|
|
self.input_mask = input_mask
|
|
self.segment_ids = segment_ids
|
|
self.label_id = label_id
|
|
|
|
|
|
class DataProcessor(object):
|
|
"""Base class for data converters for sequence classification data sets."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the train set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the dev set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_labels(self):
|
|
"""Gets the list of labels for this data set."""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def _read_tsv(cls, input_file, quotechar=None):
|
|
"""Reads a tab separated value file."""
|
|
with open(input_file, "r") as f:
|
|
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
|
lines = []
|
|
for line in reader:
|
|
lines.append(line)
|
|
return lines
|
|
|
|
|
|
class MrpcProcessor(DataProcessor):
|
|
"""Processor for the MRPC data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, i)
|
|
text_a = line[3]
|
|
text_b = line[4]
|
|
label = line[0]
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
|
|
class MnliProcessor(DataProcessor):
|
|
"""Processor for the MultiNLI data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
|
"dev_matched")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["contradiction", "entailment", "neutral"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, line[0])
|
|
text_a = line[8]
|
|
text_b = line[9]
|
|
label = line[-1]
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
|
|
class ColaProcessor(DataProcessor):
|
|
"""Processor for the CoLA data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
guid = "%s-%s" % (set_type, i)
|
|
text_a = line[3]
|
|
label = line[1]
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
|
return examples
|
|
|
|
|
|
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
|
|
"""Loads a data file into a list of `InputBatch`s."""
|
|
|
|
label_map = {}
|
|
for (i, label) in enumerate(label_list):
|
|
label_map[label] = i
|
|
|
|
features = []
|
|
for (ex_index, example) in enumerate(examples):
|
|
tokens_a = tokenizer.tokenize(example.text_a)
|
|
|
|
tokens_b = None
|
|
if example.text_b:
|
|
tokens_b = tokenizer.tokenize(example.text_b)
|
|
|
|
if tokens_b:
|
|
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
|
# length is less than the specified length.
|
|
# Account for [CLS], [SEP], [SEP] with "- 3"
|
|
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
|
else:
|
|
# Account for [CLS] and [SEP] with "- 2"
|
|
if len(tokens_a) > max_seq_length - 2:
|
|
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
|
|
|
# The convention in BERT is:
|
|
# (a) For sequence pairs:
|
|
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
|
# (b) For single sequences:
|
|
# tokens: [CLS] the dog is hairy . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0
|
|
#
|
|
# Where "type_ids" are used to indicate whether this is the first
|
|
# sequence or the second sequence. The embedding vectors for `type=0` and
|
|
# `type=1` were learned during pre-training and are added to the wordpiece
|
|
# embedding vector (and position vector). This is not *strictly* necessary
|
|
# since the [SEP] token unambigiously separates the sequences, but it makes
|
|
# it easier for the model to learn the concept of sequences.
|
|
#
|
|
# For classification tasks, the first vector (corresponding to [CLS]) is
|
|
# used as as the "sentence vector". Note that this only makes sense because
|
|
# the entire model is fine-tuned.
|
|
tokens = []
|
|
segment_ids = []
|
|
tokens.append("[CLS]")
|
|
segment_ids.append(0)
|
|
for token in tokens_a:
|
|
tokens.append(token)
|
|
segment_ids.append(0)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(0)
|
|
|
|
if tokens_b:
|
|
for token in tokens_b:
|
|
tokens.append(token)
|
|
segment_ids.append(1)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(1)
|
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
|
# tokens are attended to.
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
# Zero-pad up to the sequence length.
|
|
while len(input_ids) < max_seq_length:
|
|
input_ids.append(0)
|
|
input_mask.append(0)
|
|
segment_ids.append(0)
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
assert len(input_mask) == max_seq_length
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
label_id = label_map[example.label]
|
|
if ex_index < 5:
|
|
logger.info("*** Example ***")
|
|
logger.info("guid: %s" % (example.guid))
|
|
logger.info("tokens: %s" % " ".join(
|
|
[str(x) for x in tokens]))
|
|
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
|
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
|
logger.info(
|
|
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
|
logger.info("label: %s (id = %d)" % (example.label, label_id))
|
|
|
|
features.append(
|
|
InputFeatures(input_ids=input_ids,
|
|
input_mask=input_mask,
|
|
segment_ids=segment_ids,
|
|
label_id=label_id))
|
|
return features
|
|
|
|
|
|
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
|
"""Truncates a sequence pair in place to the maximum length."""
|
|
|
|
# This is a simple heuristic which will always truncate the longer sequence
|
|
# one token at a time. This makes more sense than truncating an equal percent
|
|
# of tokens from each, since if one sequence is very short then each token
|
|
# that's truncated likely contains more information than a longer sequence.
|
|
while True:
|
|
total_length = len(tokens_a) + len(tokens_b)
|
|
if total_length <= max_length:
|
|
break
|
|
if len(tokens_a) > len(tokens_b):
|
|
tokens_a.pop()
|
|
else:
|
|
tokens_b.pop()
|
|
|
|
def accuracy(out, labels):
|
|
outputs = np.argmax(out, axis=1)
|
|
return np.sum(outputs == labels)
|
|
|
|
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
|
|
""" Utility function for optimize_on_cpu and 16-bits training.
|
|
Copy the parameters optimized on CPU/RAM back to the model on GPU
|
|
"""
|
|
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
|
|
if name_opti != name_model:
|
|
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
|
|
raise ValueError
|
|
param_model.data.copy_(param_opti.data)
|
|
|
|
def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
|
|
""" Utility function for optimize_on_cpu and 16-bits training.
|
|
Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
|
|
"""
|
|
is_nan = False
|
|
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
|
|
if name_opti != name_model:
|
|
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
|
|
raise ValueError
|
|
if param_model.grad is not None:
|
|
if test_nan and torch.isnan(param_model.grad).sum() > 0:
|
|
is_nan = True
|
|
if param_opti.grad is None:
|
|
param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
|
|
param_opti.grad.data.copy_(param_model.grad.data)
|
|
else:
|
|
param_opti.grad = None
|
|
return is_nan
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--data_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--bert_model", default=None, type=str, required=True,
|
|
help="Bert pre-trained model selected in the list: bert-base-uncased, "
|
|
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
|
|
parser.add_argument("--task_name",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The name of the task to train.")
|
|
parser.add_argument("--output_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The output directory where the model checkpoints will be written.")
|
|
|
|
## Other parameters
|
|
parser.add_argument("--max_seq_length",
|
|
default=128,
|
|
type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, and sequences shorter \n"
|
|
"than this will be padded.")
|
|
parser.add_argument("--do_train",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to run training.")
|
|
parser.add_argument("--do_eval",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to run eval on the dev set.")
|
|
parser.add_argument("--do_lower_case",
|
|
default=False,
|
|
action='store_true',
|
|
help="Set this flag if you are using an uncased model.")
|
|
parser.add_argument("--train_batch_size",
|
|
default=32,
|
|
type=int,
|
|
help="Total batch size for training.")
|
|
parser.add_argument("--eval_batch_size",
|
|
default=8,
|
|
type=int,
|
|
help="Total batch size for eval.")
|
|
parser.add_argument("--learning_rate",
|
|
default=5e-5,
|
|
type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--num_train_epochs",
|
|
default=3.0,
|
|
type=float,
|
|
help="Total number of training epochs to perform.")
|
|
parser.add_argument("--warmup_proportion",
|
|
default=0.1,
|
|
type=float,
|
|
help="Proportion of training to perform linear learning rate warmup for. "
|
|
"E.g., 0.1 = 10%% of training.")
|
|
parser.add_argument("--no_cuda",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether not to use CUDA when available")
|
|
parser.add_argument("--local_rank",
|
|
type=int,
|
|
default=-1,
|
|
help="local_rank for distributed training on gpus")
|
|
parser.add_argument('--seed',
|
|
type=int,
|
|
default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--gradient_accumulation_steps',
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumualte before performing a backward/update pass.")
|
|
parser.add_argument('--optimize_on_cpu',
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to perform optimization and keep the optimizer averages on CPU")
|
|
parser.add_argument('--fp16',
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to use 16-bit float precision instead of 32-bit")
|
|
parser.add_argument('--loss_scale',
|
|
type=float, default=128,
|
|
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
processors = {
|
|
"cola": ColaProcessor,
|
|
"mnli": MnliProcessor,
|
|
"mrpc": MrpcProcessor,
|
|
}
|
|
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
n_gpu = torch.cuda.device_count()
|
|
else:
|
|
device = torch.device("cuda", args.local_rank)
|
|
n_gpu = 1
|
|
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
|
torch.distributed.init_process_group(backend='nccl')
|
|
if args.fp16:
|
|
logger.info("16-bits training currently not supported in distributed training")
|
|
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
|
|
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
|
|
|
|
if args.gradient_accumulation_steps < 1:
|
|
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
|
|
args.gradient_accumulation_steps))
|
|
|
|
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
|
|
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
if not args.do_train and not args.do_eval:
|
|
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
task_name = args.task_name.lower()
|
|
|
|
if task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (task_name))
|
|
|
|
processor = processors[task_name]()
|
|
label_list = processor.get_labels()
|
|
|
|
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
|
|
|
train_examples = None
|
|
num_train_steps = None
|
|
if args.do_train:
|
|
train_examples = processor.get_train_examples(args.data_dir)
|
|
num_train_steps = int(
|
|
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
|
|
|
|
# Prepare model
|
|
model = BertForSequenceClassification.from_pretrained(args.bert_model,
|
|
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
|
|
if args.fp16:
|
|
model.half()
|
|
model.to(device)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
|
output_device=args.local_rank)
|
|
elif n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Prepare optimizer
|
|
if args.fp16:
|
|
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
|
|
for n, param in model.named_parameters()]
|
|
elif args.optimize_on_cpu:
|
|
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
|
|
for n, param in model.named_parameters()]
|
|
else:
|
|
param_optimizer = list(model.named_parameters())
|
|
no_decay = ['bias', 'gamma', 'beta']
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
|
|
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
|
|
]
|
|
t_total = num_train_steps
|
|
if args.local_rank != -1:
|
|
t_total = t_total // torch.distributed.get_world_size()
|
|
optimizer = BertAdam(optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
warmup=args.warmup_proportion,
|
|
t_total=t_total)
|
|
|
|
global_step = 0
|
|
if args.do_train:
|
|
train_features = convert_examples_to_features(
|
|
train_examples, label_list, args.max_seq_length, tokenizer)
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_examples))
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Num steps = %d", num_train_steps)
|
|
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
|
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
|
|
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
if args.local_rank == -1:
|
|
train_sampler = RandomSampler(train_data)
|
|
else:
|
|
train_sampler = DistributedSampler(train_data)
|
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
model.train()
|
|
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
|
|
tr_loss = 0
|
|
nb_tr_examples, nb_tr_steps = 0, 0
|
|
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
|
|
batch = tuple(t.to(device) for t in batch)
|
|
input_ids, input_mask, segment_ids, label_ids = batch
|
|
loss = model(input_ids, segment_ids, input_mask, label_ids)
|
|
if n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu.
|
|
if args.fp16 and args.loss_scale != 1.0:
|
|
# rescale loss for fp16 training
|
|
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
|
|
loss = loss * args.loss_scale
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
loss.backward()
|
|
tr_loss += loss.item()
|
|
nb_tr_examples += input_ids.size(0)
|
|
nb_tr_steps += 1
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16 or args.optimize_on_cpu:
|
|
if args.fp16 and args.loss_scale != 1.0:
|
|
# scale down gradients for fp16 training
|
|
for param in model.parameters():
|
|
if param.grad is not None:
|
|
param.grad.data = param.grad.data / args.loss_scale
|
|
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
|
|
if is_nan:
|
|
logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
|
|
args.loss_scale = args.loss_scale / 2
|
|
model.zero_grad()
|
|
continue
|
|
optimizer.step()
|
|
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
|
|
else:
|
|
optimizer.step()
|
|
model.zero_grad()
|
|
global_step += 1
|
|
|
|
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
eval_examples = processor.get_dev_examples(args.data_dir)
|
|
eval_features = convert_examples_to_features(
|
|
eval_examples, label_list, args.max_seq_length, tokenizer)
|
|
logger.info("***** Running evaluation *****")
|
|
logger.info(" Num examples = %d", len(eval_examples))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
# Run prediction for full data
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
model.eval()
|
|
eval_loss, eval_accuracy = 0, 0
|
|
nb_eval_steps, nb_eval_examples = 0, 0
|
|
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
label_ids = label_ids.to(device)
|
|
|
|
with torch.no_grad():
|
|
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
|
|
|
|
logits = logits.detach().cpu().numpy()
|
|
label_ids = label_ids.to('cpu').numpy()
|
|
tmp_eval_accuracy = accuracy(logits, label_ids)
|
|
|
|
eval_loss += tmp_eval_loss.mean().item()
|
|
eval_accuracy += tmp_eval_accuracy
|
|
|
|
nb_eval_examples += input_ids.size(0)
|
|
nb_eval_steps += 1
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
eval_accuracy = eval_accuracy / nb_eval_examples
|
|
|
|
result = {'eval_loss': eval_loss,
|
|
'eval_accuracy': eval_accuracy,
|
|
'global_step': global_step,
|
|
'loss': tr_loss/nb_tr_steps}
|
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|