mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* fix #14524 (IndexError when mask prob is too low) * fix formatting * correct documentation, add option for setting min_num_masks * change the semantic meaning of `mask_prob` in _compute_mask_indices With this commit the meaing of `mask_prob` actually adhered to the probability for each vector to be the start of a masked span of length. * fix check_copies test * fix documentation to semantic meaning of `upper bound of overall masking percentage`, revert changes to _compute_mask_indices * fix typo
1340 lines
55 KiB
Python
1340 lines
55 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch Wav2Vec2 model. """
|
|
|
|
import math
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
|
|
from transformers import Wav2Vec2Config, is_torch_available
|
|
from transformers.testing_utils import (
|
|
is_pt_flax_cross_test,
|
|
require_datasets,
|
|
require_soundfile,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_common import ModelTesterMixin, _config_zero_init
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Wav2Vec2FeatureExtractor,
|
|
Wav2Vec2ForCTC,
|
|
Wav2Vec2ForMaskedLM,
|
|
Wav2Vec2ForPreTraining,
|
|
Wav2Vec2ForSequenceClassification,
|
|
Wav2Vec2Model,
|
|
Wav2Vec2Processor,
|
|
)
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
|
Wav2Vec2GumbelVectorQuantizer,
|
|
_compute_mask_indices,
|
|
_sample_negative_indices,
|
|
)
|
|
|
|
|
|
class Wav2Vec2ModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=1024, # speech is longer
|
|
is_training=False,
|
|
hidden_size=16,
|
|
feat_extract_norm="group",
|
|
feat_extract_dropout=0.0,
|
|
feat_extract_activation="gelu",
|
|
conv_dim=(32, 32, 32),
|
|
conv_stride=(4, 4, 4),
|
|
conv_kernel=(8, 8, 8),
|
|
conv_bias=False,
|
|
num_conv_pos_embeddings=16,
|
|
num_conv_pos_embedding_groups=2,
|
|
num_hidden_layers=4,
|
|
num_attention_heads=2,
|
|
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
|
|
intermediate_size=20,
|
|
layer_norm_eps=1e-5,
|
|
hidden_act="gelu",
|
|
initializer_range=0.02,
|
|
mask_time_prob=0.5,
|
|
mask_time_length=2,
|
|
vocab_size=32,
|
|
do_stable_layer_norm=False,
|
|
num_adapter_layers=1,
|
|
adapter_stride=2,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.feat_extract_norm = feat_extract_norm
|
|
self.feat_extract_dropout = feat_extract_dropout
|
|
self.feat_extract_activation = feat_extract_activation
|
|
self.conv_dim = conv_dim
|
|
self.conv_stride = conv_stride
|
|
self.conv_kernel = conv_kernel
|
|
self.conv_bias = conv_bias
|
|
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
|
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.intermediate_size = intermediate_size
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.vocab_size = vocab_size
|
|
self.do_stable_layer_norm = do_stable_layer_norm
|
|
self.num_adapter_layers = num_adapter_layers
|
|
self.adapter_stride = adapter_stride
|
|
self.mask_time_prob = mask_time_prob
|
|
self.mask_time_length = mask_time_length
|
|
self.scope = scope
|
|
|
|
output_seq_length = self.seq_length
|
|
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
|
|
output_seq_length = (output_seq_length - (kernel - 1)) / stride
|
|
self.output_seq_length = int(math.ceil(output_seq_length))
|
|
self.encoder_seq_length = self.output_seq_length
|
|
|
|
self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_values, attention_mask
|
|
|
|
def get_config(self):
|
|
return Wav2Vec2Config(
|
|
hidden_size=self.hidden_size,
|
|
feat_extract_norm=self.feat_extract_norm,
|
|
feat_extract_dropout=self.feat_extract_dropout,
|
|
feat_extract_activation=self.feat_extract_activation,
|
|
conv_dim=self.conv_dim,
|
|
conv_stride=self.conv_stride,
|
|
conv_kernel=self.conv_kernel,
|
|
conv_bias=self.conv_bias,
|
|
mask_time_prob=self.mask_time_prob,
|
|
mask_time_length=self.mask_time_length,
|
|
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
|
|
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
intermediate_size=self.intermediate_size,
|
|
layer_norm_eps=self.layer_norm_eps,
|
|
do_stable_layer_norm=self.do_stable_layer_norm,
|
|
hidden_act=self.hidden_act,
|
|
initializer_range=self.initializer_range,
|
|
vocab_size=self.vocab_size,
|
|
num_adapter_layers=self.num_adapter_layers,
|
|
adapter_stride=self.adapter_stride,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_values, attention_mask):
|
|
model = Wav2Vec2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_values, attention_mask=attention_mask)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
|
|
config.add_adapter = True
|
|
model = Wav2Vec2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_values, attention_mask=attention_mask)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
|
|
config.add_adapter = True
|
|
config.output_hidden_size = 8
|
|
model = Wav2Vec2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_values, attention_mask=attention_mask)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape,
|
|
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
|
|
)
|
|
|
|
def create_and_check_batch_inference(self, config, input_values, *args):
|
|
# test does not pass for models making use of `group_norm`
|
|
# check: https://github.com/pytorch/fairseq/issues/3227
|
|
model = Wav2Vec2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0.0
|
|
|
|
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
|
|
|
for i in range(input_values.shape[0]):
|
|
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
|
output = model(input_slice).last_hidden_state
|
|
|
|
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
|
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
|
|
|
def check_ctc_loss(self, config, input_values, *args):
|
|
model = Wav2Vec2ForCTC(config=config)
|
|
model.to(torch_device)
|
|
|
|
# make sure that dropout is disabled
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0
|
|
|
|
model.config.ctc_loss_reduction = "sum"
|
|
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
|
|
model.config.ctc_loss_reduction = "mean"
|
|
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
|
|
self.parent.assertTrue(isinstance(sum_loss, float))
|
|
self.parent.assertTrue(isinstance(mean_loss, float))
|
|
|
|
def check_seq_classifier_loss(self, config, input_values, *args):
|
|
model = Wav2Vec2ForSequenceClassification(config=config)
|
|
model.to(torch_device)
|
|
|
|
# make sure that dropout is disabled
|
|
model.eval()
|
|
|
|
input_values = input_values[:3]
|
|
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
attention_mask[i, input_lengths[i] :] = 0
|
|
|
|
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
|
|
unmasked_loss = model(input_values, labels=labels).loss.item()
|
|
|
|
self.parent.assertTrue(isinstance(masked_loss, float))
|
|
self.parent.assertTrue(isinstance(unmasked_loss, float))
|
|
self.parent.assertTrue(masked_loss != unmasked_loss)
|
|
|
|
def check_ctc_training(self, config, input_values, *args):
|
|
config.ctc_zero_infinity = True
|
|
model = Wav2Vec2ForCTC(config=config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
# freeze feature encoder
|
|
model.freeze_feature_extractor()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
|
|
if max_length_labels[i] < labels.shape[-1]:
|
|
# it's important that we make sure that target lenghts are at least
|
|
# one shorter than logit lenghts to prevent -inf
|
|
labels[i, max_length_labels[i] - 1 :] = -100
|
|
|
|
loss = model(input_values, labels=labels).loss
|
|
self.parent.assertFalse(torch.isinf(loss).item())
|
|
|
|
loss.backward()
|
|
|
|
def check_seq_classifier_training(self, config, input_values, *args):
|
|
config.ctc_zero_infinity = True
|
|
model = Wav2Vec2ForSequenceClassification(config=config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
# freeze everything but the classification head
|
|
model.freeze_base_model()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
|
|
|
|
# pad input
|
|
for i in range(len(input_lengths)):
|
|
input_values[i, input_lengths[i] :] = 0.0
|
|
|
|
loss = model(input_values, labels=labels).loss
|
|
self.parent.assertFalse(torch.isinf(loss).item())
|
|
|
|
loss.backward()
|
|
|
|
def check_labels_out_of_vocab(self, config, input_values, *args):
|
|
model = Wav2Vec2ForCTC(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
input_values = input_values[:3]
|
|
|
|
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
|
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
|
|
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
|
|
|
|
with pytest.raises(ValueError):
|
|
model(input_values, labels=labels)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, input_values, attention_mask = self.prepare_config_and_inputs()
|
|
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
test_pruning = False
|
|
test_headmasking = False
|
|
test_torchscript = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Wav2Vec2ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_adapter(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
|
|
|
|
def test_model_with_adapter_proj_dim(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
|
|
|
|
def test_ctc_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_loss(*config_and_inputs)
|
|
|
|
def test_seq_classifier_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
|
|
|
|
def test_ctc_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_training(*config_and_inputs)
|
|
|
|
def test_seq_classifier_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_training(*config_and_inputs)
|
|
|
|
def test_labels_out_of_vocab(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
|
|
|
|
# Wav2Vec2 has no inputs_embeds
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
# `input_ids` is renamed to `input_values`
|
|
def test_forward_signature(self):
|
|
pass
|
|
|
|
# Wav2Vec2 cannot resize token embeddings
|
|
# since it has no tokens embeddings
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
# Wav2Vec2 has no inputs_embeds
|
|
# and thus the `get_input_embeddings` fn
|
|
# is not implemented
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@is_pt_flax_cross_test
|
|
# non-robust architecture does not exist in Flax
|
|
def test_equivalence_flax_to_pt(self):
|
|
pass
|
|
|
|
@is_pt_flax_cross_test
|
|
# non-robust architecture does not exist in Flax
|
|
def test_equivalence_pt_to_flax(self):
|
|
pass
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = True
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
# set layer drop to 0
|
|
model.config.layerdrop = 0.0
|
|
|
|
input_values = inputs_dict["input_values"]
|
|
|
|
input_lengths = torch.tensor(
|
|
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
|
|
)
|
|
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
|
|
|
|
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
|
|
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
|
|
inputs_dict["labels"] = labels
|
|
|
|
outputs = model(**inputs_dict)
|
|
|
|
output = outputs[0]
|
|
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
attentions = outputs.attentions[0]
|
|
|
|
hidden_states.retain_grad()
|
|
attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
self.assertIsNotNone(attentions.grad)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
uniform_init_parms = [
|
|
"conv.weight",
|
|
"masked_spec_embed",
|
|
"codevectors",
|
|
"quantizer.weight_proj.weight",
|
|
"project_hid.weight",
|
|
"project_hid.bias",
|
|
"project_q.weight",
|
|
"project_q.bias",
|
|
"feature_projection.projection.weight",
|
|
"feature_projection.projection.bias",
|
|
]
|
|
if param.requires_grad:
|
|
if any([x in name for x in uniform_init_parms]):
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# overwrite from test_modeling_common
|
|
def _mock_init_weights(self, module):
|
|
if hasattr(module, "weight") and module.weight is not None:
|
|
module.weight.data.fill_(3)
|
|
if hasattr(module, "weight_g") and module.weight_g is not None:
|
|
module.weight_g.data.fill_(3)
|
|
if hasattr(module, "weight_v") and module.weight_v is not None:
|
|
module.weight_v.data.fill_(3)
|
|
if hasattr(module, "bias") and module.bias is not None:
|
|
module.bias.data.fill_(3)
|
|
if hasattr(module, "codevectors") and module.codevectors is not None:
|
|
module.codevectors.data.fill_(3)
|
|
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
|
|
module.masked_spec_embed.data.fill_(3)
|
|
|
|
def test_mask_feature_prob_ctc(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
|
|
)
|
|
model.to(torch_device).train()
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
|
|
)
|
|
|
|
batch_duration_in_seconds = [1, 3, 2, 6]
|
|
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
|
|
|
|
batch = processor(
|
|
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
|
|
)
|
|
|
|
logits = model(
|
|
input_values=batch["input_values"].to(torch_device),
|
|
attention_mask=batch["attention_mask"].to(torch_device),
|
|
).logits
|
|
|
|
self.assertEqual(logits.shape, (4, 1498, 32))
|
|
|
|
def test_mask_time_prob_ctc(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
|
|
)
|
|
model.to(torch_device).train()
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
|
|
)
|
|
|
|
batch_duration_in_seconds = [1, 3, 2, 6]
|
|
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
|
|
|
|
batch = processor(
|
|
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
|
|
)
|
|
|
|
logits = model(
|
|
input_values=batch["input_values"].to(torch_device),
|
|
attention_mask=batch["attention_mask"].to(torch_device),
|
|
).logits
|
|
|
|
self.assertEqual(logits.shape, (4, 1498, 32))
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
test_pruning = False
|
|
test_headmasking = False
|
|
test_torchscript = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Wav2Vec2ModelTester(
|
|
self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
|
|
)
|
|
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_adapter(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
|
|
|
|
def test_model_with_adapter_proj_dim(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
|
|
|
|
def test_batched_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
|
|
|
|
def test_ctc_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_loss(*config_and_inputs)
|
|
|
|
def test_seq_classifier_loss_inference(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
|
|
|
|
def test_ctc_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_ctc_training(*config_and_inputs)
|
|
|
|
def test_seq_classifier_train(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_seq_classifier_training(*config_and_inputs)
|
|
|
|
def test_labels_out_of_vocab(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
|
|
|
|
# Wav2Vec2 has no inputs_embeds
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
# `input_ids` is renamed to `input_values`
|
|
def test_forward_signature(self):
|
|
pass
|
|
|
|
# Wav2Vec2 cannot resize token embeddings
|
|
# since it has no tokens embeddings
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
# Wav2Vec2 has no inputs_embeds
|
|
# and thus the `get_input_embeddings` fn
|
|
# is not implemented
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = True
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
# set layer drop to 0
|
|
model.config.layerdrop = 0.0
|
|
|
|
input_values = inputs_dict["input_values"]
|
|
|
|
input_lengths = torch.tensor(
|
|
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
|
|
)
|
|
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
|
|
|
|
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
|
|
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
|
|
inputs_dict["labels"] = labels
|
|
|
|
outputs = model(**inputs_dict)
|
|
|
|
output = outputs[0]
|
|
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
attentions = outputs.attentions[0]
|
|
|
|
hidden_states.retain_grad()
|
|
attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
self.assertIsNotNone(attentions.grad)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
uniform_init_parms = [
|
|
"conv.weight",
|
|
"masked_spec_embed",
|
|
"codevectors",
|
|
"quantizer.weight_proj.weight",
|
|
"project_hid.weight",
|
|
"project_hid.bias",
|
|
"project_q.weight",
|
|
"project_q.bias",
|
|
"feature_projection.projection.weight",
|
|
"feature_projection.projection.bias",
|
|
]
|
|
if param.requires_grad:
|
|
if any([x in name for x in uniform_init_parms]):
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# overwrite from test_modeling_common
|
|
def _mock_init_weights(self, module):
|
|
if hasattr(module, "weight") and module.weight is not None:
|
|
module.weight.data.fill_(3)
|
|
if hasattr(module, "weight_g") and module.weight_g is not None:
|
|
module.weight_g.data.fill_(3)
|
|
if hasattr(module, "weight_v") and module.weight_v is not None:
|
|
module.weight_v.data.fill_(3)
|
|
if hasattr(module, "bias") and module.bias is not None:
|
|
module.bias.data.fill_(3)
|
|
if hasattr(module, "codevectors") and module.codevectors is not None:
|
|
module.codevectors.data.fill_(3)
|
|
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
|
|
module.masked_spec_embed.data.fill_(3)
|
|
|
|
def test_model_for_pretraining(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = Wav2Vec2ForPreTraining(config).to(torch_device)
|
|
|
|
features_shape = (
|
|
inputs_dict["input_values"].shape[0],
|
|
model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
|
|
)
|
|
|
|
mask_time_indices = _compute_mask_indices(
|
|
features_shape,
|
|
model.config.mask_time_prob,
|
|
model.config.mask_time_length,
|
|
min_masks=2,
|
|
)
|
|
sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)
|
|
|
|
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
|
|
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
|
|
|
|
loss = model(
|
|
inputs_dict["input_values"],
|
|
attention_mask=inputs_dict["attention_mask"],
|
|
mask_time_indices=mask_time_indices,
|
|
sampled_negative_indices=sampled_negative_indices,
|
|
).loss
|
|
|
|
# more losses
|
|
mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
|
|
|
|
sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
|
|
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
|
|
loss_more_masked = model(
|
|
inputs_dict["input_values"],
|
|
attention_mask=inputs_dict["attention_mask"],
|
|
mask_time_indices=mask_time_indices,
|
|
sampled_negative_indices=sampled_negative_indices,
|
|
).loss
|
|
|
|
# loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
|
|
self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
|
|
|
|
def test_mask_feature_prob_ctc(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
|
|
)
|
|
model.to(torch_device).train()
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
|
|
)
|
|
|
|
batch_duration_in_seconds = [1, 3, 2, 6]
|
|
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
|
|
|
|
batch = processor(
|
|
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
|
|
)
|
|
|
|
logits = model(
|
|
input_values=batch["input_values"].to(torch_device),
|
|
attention_mask=batch["attention_mask"].to(torch_device),
|
|
).logits
|
|
|
|
self.assertEqual(logits.shape, (4, 1498, 32))
|
|
|
|
def test_mask_time_prob_ctc(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
|
|
)
|
|
model.to(torch_device).train()
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
|
|
)
|
|
|
|
batch_duration_in_seconds = [1, 3, 2, 6]
|
|
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
|
|
|
|
batch = processor(
|
|
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
|
|
)
|
|
|
|
logits = model(
|
|
input_values=batch["input_values"].to(torch_device),
|
|
attention_mask=batch["attention_mask"].to(torch_device),
|
|
).logits
|
|
|
|
self.assertEqual(logits.shape, (4, 1498, 32))
|
|
|
|
def test_mask_time_feature_prob_ctc_single_batch(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2",
|
|
mask_time_prob=0.2,
|
|
mask_feature_prob=0.2,
|
|
mask_time_length=2,
|
|
mask_feature_length=2,
|
|
)
|
|
model.to(torch_device).train()
|
|
processor = Wav2Vec2Processor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
|
|
)
|
|
|
|
batch_duration_in_seconds = [6]
|
|
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
|
|
|
|
batch = processor(
|
|
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
|
|
)
|
|
|
|
logits = model(
|
|
input_values=batch["input_values"].to(torch_device),
|
|
attention_mask=batch["attention_mask"].to(torch_device),
|
|
).logits
|
|
|
|
self.assertEqual(logits.shape, (1, 1498, 32))
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_torch
|
|
class Wav2Vec2UtilsTest(unittest.TestCase):
|
|
def test_compute_mask_indices(self):
|
|
batch_size = 4
|
|
sequence_length = 60
|
|
mask_prob = 0.5
|
|
mask_length = 1
|
|
|
|
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
|
|
mask = torch.from_numpy(mask).to(torch_device)
|
|
|
|
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
|
|
|
|
def test_compute_mask_indices_low_prob(self):
|
|
# with these settings num_masked_spans=0.5, which means probabilistic rounding
|
|
# ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
|
|
# the other 5 out of 10, cases num_masked_spans=1
|
|
n_trials = 100
|
|
batch_size = 4
|
|
sequence_length = 100
|
|
mask_prob = 0.05
|
|
mask_length = 10
|
|
|
|
count_dimensions_masked = 0
|
|
count_dimensions_not_masked = 0
|
|
|
|
for _ in range(n_trials):
|
|
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
|
|
mask = torch.from_numpy(mask).to(torch_device)
|
|
|
|
num_masks = torch.sum(mask).item()
|
|
|
|
if num_masks > 0:
|
|
count_dimensions_masked += 1
|
|
else:
|
|
count_dimensions_not_masked += 1
|
|
|
|
# as we test for at least 10 masked dimension and at least
|
|
# 10 non-masked dimension, this test could fail with probability:
|
|
# P(100 coin flips, at most 9 heads) = 1.66e-18
|
|
self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
|
|
self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))
|
|
|
|
def test_compute_mask_indices_overlap(self):
|
|
batch_size = 4
|
|
sequence_length = 80
|
|
mask_prob = 0.5
|
|
mask_length = 4
|
|
|
|
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
|
|
mask = torch.from_numpy(mask).to(torch_device)
|
|
|
|
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
|
|
for batch_sum in mask.sum(axis=-1):
|
|
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
|
|
|
|
def test_compute_mask_indices_attn_mask_overlap(self):
|
|
batch_size = 4
|
|
sequence_length = 80
|
|
mask_prob = 0.5
|
|
mask_length = 4
|
|
|
|
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
|
|
attention_mask[:2, sequence_length // 2 :] = 0
|
|
|
|
mask = _compute_mask_indices(
|
|
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
|
|
)
|
|
mask = torch.from_numpy(mask).to(torch_device)
|
|
|
|
for batch_sum in mask.sum(axis=-1):
|
|
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
|
|
|
|
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
|
|
|
|
def test_compute_perplexity(self):
|
|
probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100
|
|
|
|
ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
|
|
self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)
|
|
|
|
# mask half of the input
|
|
mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
|
|
mask[0] = 0
|
|
|
|
ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
|
|
self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)
|
|
|
|
def test_sample_negatives(self):
|
|
batch_size = 2
|
|
sequence_length = 10
|
|
hidden_size = 4
|
|
num_negatives = 3
|
|
|
|
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
|
|
sequence_length, hidden_size
|
|
) # each value in vector consits of same value
|
|
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
|
|
|
|
# sample negative indices
|
|
sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
|
|
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
|
|
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
|
|
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
|
|
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
|
|
|
|
# make sure no negatively sampled vector is actually a positive one
|
|
for negative in negatives:
|
|
self.assertTrue(((negative - features) == 0).sum() == 0.0)
|
|
|
|
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
|
|
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
|
|
|
|
def test_sample_negatives_with_mask(self):
|
|
batch_size = 2
|
|
sequence_length = 10
|
|
hidden_size = 4
|
|
num_negatives = 3
|
|
|
|
# second half of last input tensor is padded
|
|
mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
|
|
mask[-1, sequence_length // 2 :] = 0
|
|
|
|
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
|
|
sequence_length, hidden_size
|
|
) # each value in vector consits of same value
|
|
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
|
|
|
|
# replace masked feature vectors with -100 to test that those are not sampled
|
|
features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
|
|
|
|
# sample negative indices
|
|
sampled_negative_indices = _sample_negative_indices(
|
|
(batch_size, sequence_length), num_negatives, mask.cpu().numpy()
|
|
)
|
|
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
|
|
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
|
|
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
|
|
|
|
self.assertTrue((negatives >= 0).all().item())
|
|
|
|
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
|
|
|
|
# make sure no negatively sampled vector is actually a positive one
|
|
for negative in negatives:
|
|
self.assertTrue(((negative - features) == 0).sum() == 0.0)
|
|
|
|
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
|
|
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
|
|
|
|
|
|
@require_torch
|
|
@require_datasets
|
|
@require_soundfile
|
|
@slow
|
|
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
|
|
def _load_datasamples(self, num_samples):
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
# automatic decoding with librispeech
|
|
speech_samples = ds.sort("id").filter(
|
|
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
|
|
)[:num_samples]["audio"]
|
|
|
|
return [x["array"] for x in speech_samples]
|
|
|
|
def _load_superb(self, task, num_samples):
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("anton-l/superb_dummy", task, split="test")
|
|
|
|
return ds[:num_samples]
|
|
|
|
def test_inference_ctc_normal(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
model.to(torch_device)
|
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
|
|
input_speech = self._load_datasamples(1)
|
|
|
|
input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits = model(input_values).logits
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
predicted_trans = processor.batch_decode(predicted_ids)
|
|
|
|
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
|
|
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
|
|
|
|
def test_inference_ctc_normal_batched(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
model.to(torch_device)
|
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
|
|
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs = processor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits = model(input_values).logits
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
predicted_trans = processor.batch_decode(predicted_ids)
|
|
|
|
EXPECTED_TRANSCRIPTIONS = [
|
|
"a man said to the universe sir i exist",
|
|
"sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
|
|
]
|
|
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
|
|
|
|
def test_inference_ctc_robust_batched(self):
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
|
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
|
|
|
|
input_speech = self._load_datasamples(4)
|
|
|
|
inputs = processor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits = model(input_values, attention_mask=attention_mask).logits
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
predicted_trans = processor.batch_decode(predicted_ids)
|
|
|
|
EXPECTED_TRANSCRIPTIONS = [
|
|
"a man said to the universe sir i exist",
|
|
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
|
|
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
|
|
"his instant panic was followed by a small sharp blow high on his chest",
|
|
]
|
|
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
|
|
|
|
@unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
|
|
def test_inference_integration(self):
|
|
model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
|
model.to(torch_device)
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
features_shape = (
|
|
inputs_dict["input_values"].shape[0],
|
|
model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
|
|
)
|
|
|
|
np.random.seed(4)
|
|
mask_time_indices = _compute_mask_indices(
|
|
features_shape,
|
|
model.config.mask_time_prob,
|
|
model.config.mask_time_length,
|
|
min_masks=2,
|
|
)
|
|
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(
|
|
inputs_dict.input_values.to(torch_device),
|
|
mask_time_indices=mask_time_indices,
|
|
)
|
|
|
|
# compute cosine similarity
|
|
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
|
|
|
|
# retrieve cosine sim of masked features
|
|
cosine_sim_masked = cosine_sim[mask_time_indices]
|
|
|
|
# cosine similarity of model is all > 0.5 as model is
|
|
# pre-trained on contrastive loss
|
|
# fmt: off
|
|
expected_cosine_sim_masked = torch.tensor([
|
|
0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
|
|
0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
|
|
0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
|
|
0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
|
|
0.7768, 0.4898, 0.5393, 0.8183
|
|
], device=torch_device)
|
|
# fmt: on
|
|
|
|
self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))
|
|
|
|
def test_inference_pretrained(self):
|
|
model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
|
model.to(torch_device)
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
"facebook/wav2vec2-base", return_attention_mask=True
|
|
)
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
features_shape = (
|
|
inputs_dict["input_values"].shape[0],
|
|
model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
mask_time_indices = _compute_mask_indices(
|
|
features_shape,
|
|
model.config.mask_time_prob,
|
|
model.config.mask_time_length,
|
|
min_masks=2,
|
|
)
|
|
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(
|
|
inputs_dict.input_values.to(torch_device),
|
|
attention_mask=inputs_dict.attention_mask.to(torch_device),
|
|
mask_time_indices=mask_time_indices,
|
|
)
|
|
|
|
# compute cosine similarity
|
|
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
|
|
|
|
# retrieve cosine sim of masked features
|
|
cosine_sim_masked = cosine_sim[mask_time_indices]
|
|
|
|
# ... now compare to randomly initialized model
|
|
|
|
config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
|
|
model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()
|
|
|
|
with torch.no_grad():
|
|
outputs_rand = model_rand(
|
|
inputs_dict.input_values.to(torch_device),
|
|
attention_mask=inputs_dict.attention_mask.to(torch_device),
|
|
mask_time_indices=mask_time_indices,
|
|
)
|
|
|
|
# compute cosine similarity
|
|
cosine_sim_rand = torch.cosine_similarity(
|
|
outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
|
|
)
|
|
|
|
# retrieve cosine sim of masked features
|
|
cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]
|
|
|
|
# a pretrained wav2vec2 model has learned to predict the quantized latent states
|
|
# => the cosine similarity between quantized states and predicted states > 0.5
|
|
# a random wav2vec2 model has not learned to predict the quantized latent states
|
|
# => the cosine similarity between quantized states and predicted states is very likely < 0.1
|
|
self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
|
|
|
|
@unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
|
|
def test_loss_pretraining(self):
|
|
model = Wav2Vec2ForPreTraining.from_pretrained(
|
|
"facebook/wav2vec2-base",
|
|
attention_dropout=0.0,
|
|
feat_proj_dropout=0.0,
|
|
hidden_dropout=0.0,
|
|
layerdrop=0.0,
|
|
)
|
|
model.to(torch_device).train()
|
|
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
"facebook/wav2vec2-base", return_attention_mask=True
|
|
)
|
|
input_speech = self._load_datasamples(2)
|
|
|
|
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
|
|
|
|
features_shape = (
|
|
inputs_dict["input_values"].shape[0],
|
|
model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
|
|
mask_time_indices = _compute_mask_indices(
|
|
features_shape,
|
|
model.config.mask_time_prob,
|
|
model.config.mask_time_length,
|
|
min_masks=2,
|
|
)
|
|
sampled_negative_indices = _sample_negative_indices(
|
|
mask_time_indices.shape, model.config.num_negatives, mask_time_indices
|
|
)
|
|
|
|
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
|
|
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(
|
|
inputs_dict.input_values.to(torch_device),
|
|
attention_mask=inputs_dict.attention_mask.to(torch_device),
|
|
mask_time_indices=mask_time_indices,
|
|
sampled_negative_indices=sampled_negative_indices,
|
|
)
|
|
|
|
# check diversity loss
|
|
num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
|
|
diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
|
|
self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
|
|
|
|
# check overall loss (contrastive loss + diversity loss)
|
|
expected_loss = 116.7094
|
|
|
|
self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
|
|
|
|
def test_inference_keyword_spotting(self):
|
|
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
|
|
input_data = self._load_superb("ks", 4)
|
|
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(input_values, attention_mask=attention_mask)
|
|
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
|
|
|
|
expected_labels = [7, 6, 10, 9]
|
|
# s3prl logits for the same batch
|
|
expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)
|
|
|
|
self.assertListEqual(predicted_ids.tolist(), expected_labels)
|
|
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
|
|
|
|
def test_inference_intent_classification(self):
|
|
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
|
|
input_data = self._load_superb("ic", 4)
|
|
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(input_values, attention_mask=attention_mask)
|
|
|
|
predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
|
|
predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
|
|
predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)
|
|
|
|
expected_labels_action = [0, 0, 2, 3]
|
|
expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
|
|
expected_labels_object = [3, 10, 3, 4]
|
|
expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
|
|
expected_labels_location = [0, 0, 0, 1]
|
|
expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)
|
|
|
|
self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
|
|
self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
|
|
self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)
|
|
|
|
self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
|
|
self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
|
|
self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))
|
|
|
|
def test_inference_speaker_identification(self):
|
|
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
|
|
input_data = self._load_superb("si", 4)
|
|
|
|
output_logits = []
|
|
with torch.no_grad():
|
|
for example in input_data["speech"]:
|
|
input = processor(example, return_tensors="pt", padding=True)
|
|
output = model(input.input_values.to(torch_device), attention_mask=None)
|
|
output_logits.append(output.logits[0])
|
|
output_logits = torch.stack(output_logits)
|
|
predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)
|
|
|
|
expected_labels = [251, 1, 1, 3]
|
|
# s3prl logits for the same batch
|
|
expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)
|
|
|
|
self.assertListEqual(predicted_ids.tolist(), expected_labels)
|
|
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
|
|
|
|
def test_inference_emotion_recognition(self):
|
|
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
|
|
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
|
|
input_data = self._load_superb("er", 4)
|
|
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
|
|
|
|
input_values = inputs.input_values.to(torch_device)
|
|
attention_mask = inputs.attention_mask.to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(input_values, attention_mask=attention_mask)
|
|
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
|
|
|
|
expected_labels = [1, 1, 2, 2]
|
|
# s3prl logits for the same batch
|
|
expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)
|
|
|
|
self.assertListEqual(predicted_ids.tolist(), expected_labels)
|
|
self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
|