transformers/tests/pipelines/test_pipelines_visual_question_answering.py
Sijun He 66336dc183
Add Visual Question Answering (VQA) pipeline (#17286)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* merge

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-13 07:49:44 -04:00

116 lines
4.1 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_torch
@require_vision
class VisualQuestionAnsweringPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
examples = [
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def run_pipeline_test(self, vqa_pipeline, examples):
outputs = vqa_pipeline(examples, top_k=1)
self.assertEqual(
outputs,
[
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
],
)
@require_torch
def test_small_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
@slow
@require_torch
def test_large_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
)
@require_tf
@unittest.skip("Visual question answering not implemented in TF")
def test_small_model_tf(self):
pass