mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 01:30:04 +06:00
511 lines
25 KiB
Python
511 lines
25 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT finetuning runner."""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
import random
|
|
from tqdm import tqdm, trange
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
|
TensorDataset)
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from tensorboardX import SummaryWriter
|
|
|
|
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
|
|
from pytorch_pretrained_bert.modeling_xlnet import XLNetForSequenceClassification
|
|
from pytorch_pretrained_bert.tokenization_xlnet import XLNetTokenizer
|
|
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
|
|
|
|
from utils_glue import processors, output_modes, convert_examples_to_features, compute_metrics
|
|
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--data_dir", default=None, type=str, required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--task_name", default=None, type=str, required=True,
|
|
help="The name of the task to train.")
|
|
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
|
help="The output directory where the model predictions and checkpoints will be written.")
|
|
# training
|
|
parser.add_argument("--do_train", action='store_true',
|
|
help="Whether to run training.")
|
|
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
|
help="Total number of training epochs to perform.")
|
|
parser.add_argument("--warmup_proportion", default=0.1, type=float,
|
|
help="Proportion of training to perform linear learning rate warmup for. "
|
|
"E.g., 0.1 = 10%% of training.")
|
|
parser.add_argument("--train_batch_size", default=32, type=int,
|
|
help="Total batch size for training.")
|
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
|
parser.add_argument('--fp16', action='store_true',
|
|
help="Whether to use 16-bit float precision instead of 32-bit")
|
|
parser.add_argument('--loss_scale', type=float, default=0,
|
|
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
|
"0 (default value): dynamic loss scaling.\n"
|
|
"Positive power of 2: static loss scaling value.\n")
|
|
# evaluation
|
|
parser.add_argument("--do_eval", action='store_true',
|
|
help="Whether to run eval on the dev set.")
|
|
parser.add_argument("--eval_batch_size", default=8, type=int,
|
|
help="Total batch size for eval.")
|
|
# Model
|
|
parser.add_argument("--xlnet_model", default="xlnet-large-cased", type=str,
|
|
help="XLNet pre-trained model: currently only xlnet-large-cased.")
|
|
parser.add_argument("--do_lower_case", action='store_true',
|
|
help="Set this flag if you are using an uncased model.")
|
|
parser.add_argument("--cache_dir", default="", type=str,
|
|
help="Where do you want to store the pre-trained models downloaded from s3")
|
|
# task specific
|
|
parser.add_argument("--max_seq_length", default=128, type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, and sequences shorter \n"
|
|
"than this will be padded.")
|
|
parser.add_argument('--overwrite_output_dir', action='store_true',
|
|
help="Overwrite the content of the output directory")
|
|
# Misc
|
|
parser.add_argument("--no_cuda", action='store_true',
|
|
help="Whether not to use CUDA when available")
|
|
parser.add_argument("--local_rank", type=int, default=-1,
|
|
help="local_rank for distributed training on gpus")
|
|
parser.add_argument('--seed', type=int, default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
|
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
n_gpu = torch.cuda.device_count()
|
|
else:
|
|
torch.cuda.set_device(args.local_rank)
|
|
device = torch.device("cuda", args.local_rank)
|
|
n_gpu = 1
|
|
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
|
torch.distributed.init_process_group(backend='nccl')
|
|
args.device = device
|
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt = '%m/%d/%Y %H:%M:%S',
|
|
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
|
|
|
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
|
|
device, n_gpu, bool(args.local_rank != -1), args.fp16))
|
|
|
|
if args.gradient_accumulation_steps < 1:
|
|
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
|
|
args.gradient_accumulation_steps))
|
|
|
|
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
|
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
if not args.do_train and not args.do_eval:
|
|
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
|
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
|
os.makedirs(args.output_dir)
|
|
|
|
task_name = args.task_name.lower()
|
|
|
|
if task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (task_name))
|
|
|
|
processor = processors[task_name]()
|
|
output_mode = output_modes[task_name]
|
|
|
|
label_list = processor.get_labels()
|
|
num_labels = len(label_list)
|
|
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
|
tokenizer = XLNetTokenizer.from_pretrained(args.xlnet_model, do_lower_case=args.do_lower_case)
|
|
model = XLNetForSequenceClassification.from_pretrained(args.xlnet_model, num_labels=num_labels)
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier()
|
|
|
|
if args.fp16:
|
|
model.half()
|
|
model.to(device)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(model,
|
|
device_ids=[args.local_rank],
|
|
output_device=args.local_rank,
|
|
find_unused_parameters=True)
|
|
elif n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
global_step = 0
|
|
nb_tr_steps = 0
|
|
tr_loss = 0
|
|
|
|
if args.do_train:
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
|
|
# Prepare data loader
|
|
train_examples = processor.get_train_examples(args.data_dir)
|
|
cached_train_features_file = os.path.join(args.data_dir, 'train_{0}_{1}_{2}'.format(
|
|
list(filter(None, args.xlnet_model.split('/'))).pop(),
|
|
str(args.max_seq_length),
|
|
str(task_name)))
|
|
try:
|
|
with open(cached_train_features_file, "rb") as reader:
|
|
train_features = pickle.load(reader)
|
|
except:
|
|
train_features = convert_examples_to_features(
|
|
train_examples, label_list, args.max_seq_length, tokenizer, output_mode,
|
|
cls_token_at_end=True, cls_token=tokenizer.CLS_TOKEN,
|
|
sep_token=tokenizer.SEP_TOKEN, cls_token_segment_id=2)
|
|
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
|
logger.info(" Saving train features into cached file %s", cached_train_features_file)
|
|
with open(cached_train_features_file, "wb") as writer:
|
|
pickle.dump(train_features, writer)
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
|
|
|
if output_mode == "classification":
|
|
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
|
|
elif output_mode == "regression":
|
|
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)
|
|
|
|
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
if args.local_rank == -1:
|
|
train_sampler = RandomSampler(train_data)
|
|
else:
|
|
train_sampler = DistributedSampler(train_data)
|
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
|
|
# Prepare optimizer
|
|
|
|
param_optimizer = list(model.named_parameters())
|
|
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
|
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
|
]
|
|
if args.fp16:
|
|
try:
|
|
from apex.optimizers import FP16_Optimizer
|
|
from apex.optimizers import FusedAdam
|
|
except ImportError:
|
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
|
|
|
optimizer = FusedAdam(optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
bias_correction=False,
|
|
max_grad_norm=1.0)
|
|
if args.loss_scale == 0:
|
|
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
|
else:
|
|
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
|
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
|
|
t_total=num_train_optimization_steps)
|
|
|
|
else:
|
|
optimizer = BertAdam(optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
warmup=args.warmup_proportion,
|
|
t_total=num_train_optimization_steps)
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_examples))
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Num steps = %d", num_train_optimization_steps)
|
|
|
|
model.train()
|
|
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
|
tr_loss = 0
|
|
nb_tr_examples, nb_tr_steps = 0, 0
|
|
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
|
batch = tuple(t.to(device) for t in batch)
|
|
input_ids, input_mask, segment_ids, label_ids = batch
|
|
|
|
# define a new function to compute loss values for both output_modes
|
|
logits, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
|
|
|
|
if output_mode == "classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
|
|
elif output_mode == "regression":
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1), label_ids.view(-1))
|
|
|
|
if n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu.
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
|
|
if args.fp16:
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
|
|
tr_loss += loss.item()
|
|
nb_tr_examples += input_ids.size(0)
|
|
nb_tr_steps += 1
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16:
|
|
# modify learning rate with special warm up BERT uses
|
|
# if args.fp16 is False, BertAdam is used that handles this automatically
|
|
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
global_step += 1
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
|
tb_writer.add_scalar('loss', loss.item(), global_step)
|
|
|
|
### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
|
### Example:
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
# Save a trained model, configuration and tokenizer
|
|
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
|
|
|
# If we save using the predefined names, we can load using `from_pretrained`
|
|
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
|
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
|
|
|
|
torch.save(model_to_save.state_dict(), output_model_file)
|
|
model_to_save.config.to_json_file(output_config_file)
|
|
tokenizer.save_vocabulary(args.output_dir)
|
|
|
|
# Load a trained model and vocabulary that you have fine-tuned
|
|
model = XLNetForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
|
|
tokenizer = XLNetTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
output_args_file = os.path.join(args.output_dir, 'training_args.bin')
|
|
torch.save(args, output_args_file)
|
|
else:
|
|
model = XLNetForSequenceClassification.from_pretrained(args.xlnet_model, num_labels=num_labels)
|
|
|
|
model.to(device)
|
|
|
|
### Evaluation
|
|
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
eval_examples = processor.get_dev_examples(args.data_dir)
|
|
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
|
|
list(filter(None, args.xlnet_model.split('/'))).pop(),
|
|
str(args.max_seq_length),
|
|
str(task_name)))
|
|
try:
|
|
with open(cached_eval_features_file, "rb") as reader:
|
|
eval_features = pickle.load(reader)
|
|
except:
|
|
eval_features = convert_examples_to_features(
|
|
eval_examples, label_list, args.max_seq_length, tokenizer, output_mode,
|
|
cls_token_at_end=True, cls_token=tokenizer.CLS_TOKEN,
|
|
sep_token=tokenizer.SEP_TOKEN, cls_token_segment_id=2)
|
|
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
|
logger.info(" Saving eval features into cached file %s", cached_eval_features_file)
|
|
with open(cached_eval_features_file, "wb") as writer:
|
|
pickle.dump(eval_features, writer)
|
|
|
|
|
|
logger.info("***** Running evaluation *****")
|
|
logger.info(" Num examples = %d", len(eval_examples))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
|
|
if output_mode == "classification":
|
|
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
|
elif output_mode == "regression":
|
|
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)
|
|
|
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
# Run prediction for full data
|
|
if args.local_rank == -1:
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
else:
|
|
eval_sampler = DistributedSampler(eval_data) # Note that this sampler samples randomly
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
model.eval()
|
|
eval_loss = 0
|
|
nb_eval_steps = 0
|
|
preds = []
|
|
out_label_ids = None
|
|
|
|
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
label_ids = label_ids.to(device)
|
|
|
|
with torch.no_grad():
|
|
logits, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
|
|
|
|
# create eval loss and other metric required by the task
|
|
if output_mode == "classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
|
|
elif output_mode == "regression":
|
|
loss_fct = MSELoss()
|
|
tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
|
|
|
|
eval_loss += tmp_eval_loss.mean().item()
|
|
nb_eval_steps += 1
|
|
if len(preds) == 0:
|
|
preds.append(logits.detach().cpu().numpy())
|
|
out_label_ids = label_ids.detach().cpu().numpy()
|
|
else:
|
|
preds[0] = np.append(
|
|
preds[0], logits.detach().cpu().numpy(), axis=0)
|
|
out_label_ids = np.append(
|
|
out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
preds = preds[0]
|
|
if output_mode == "classification":
|
|
preds = np.argmax(preds, axis=1)
|
|
elif output_mode == "regression":
|
|
preds = np.squeeze(preds)
|
|
result = compute_metrics(task_name, preds, out_label_ids)
|
|
|
|
loss = tr_loss/global_step if args.do_train else None
|
|
|
|
result['eval_loss'] = eval_loss
|
|
result['global_step'] = global_step
|
|
result['loss'] = loss
|
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
# hack for MNLI-MM
|
|
if task_name == "mnli":
|
|
task_name = "mnli-mm"
|
|
processor = processors[task_name]()
|
|
|
|
if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
|
|
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
|
|
if not os.path.exists(args.output_dir + '-MM'):
|
|
os.makedirs(args.output_dir + '-MM')
|
|
|
|
eval_examples = processor.get_dev_examples(args.data_dir)
|
|
eval_features = convert_examples_to_features(
|
|
eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
|
|
logger.info("***** Running evaluation *****")
|
|
logger.info(" Num examples = %d", len(eval_examples))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
|
|
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
# Run prediction for full data
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
model.eval()
|
|
eval_loss = 0
|
|
nb_eval_steps = 0
|
|
preds = []
|
|
out_label_ids = None
|
|
|
|
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
label_ids = label_ids.to(device)
|
|
|
|
with torch.no_grad():
|
|
logits, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=None)
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
|
|
|
|
eval_loss += tmp_eval_loss.mean().item()
|
|
nb_eval_steps += 1
|
|
if len(preds) == 0:
|
|
preds.append(logits.detach().cpu().numpy())
|
|
out_label_ids = label_ids.detach().cpu().numpy()
|
|
else:
|
|
preds[0] = np.append(
|
|
preds[0], logits.detach().cpu().numpy(), axis=0)
|
|
out_label_ids = np.append(
|
|
out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
preds = preds[0]
|
|
preds = np.argmax(preds, axis=1)
|
|
result = compute_metrics(task_name, preds, out_label_ids)
|
|
|
|
loss = tr_loss/global_step if args.do_train else None
|
|
|
|
result['eval_loss'] = eval_loss
|
|
result['global_step'] = global_step
|
|
result['loss'] = loss
|
|
|
|
output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|