transformers/docs/source/model_doc/data2vec.mdx
Eduardo Gonzalez Ponferrada df5a4094a6
Add Data2Vec (#15507)
* Add data2vec model cloned from roberta

* Add checkpoint conversion script

* Fix copies

* Update docs

* Add checkpoint conversion script

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update documentation

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* add inputs to logits to data2vec'

* correct autio models

* correct config auto

* correct tok auto

* Update utils/tests_fetcher.py

* delete unnecessary files

* delete unnecessary files

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix copies

* Update docs

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update documentation

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* add inputs to logits to data2vec'

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* correct autio models

* correct config auto

* correct tok auto

* delete unnecessary files

* delete unnecessary files

* Update utils/tests_fetcher.py

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move data2vec tests to new structure

* Fix test imports for text tests

* Remove fairseq files

* Change paper link to arxiv

* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.

* Update text model checkpoint to be facebook/data2vec-text-base

* Add 'Copy from' statements and update paper links and docs

* fix copy from statements

* improve copied from

* correct more copied from statements

* finish copied from stuff

* make style

* add model to README

* add to master

Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 11:09:20 +01:00

111 lines
3.7 KiB
Plaintext

<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Data2Vec
## Overview
The Data2Vec model was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli.
Data2Vec proposes a unified framework for self-supervised learning across different data modalities - text, audio and images.
Importantly, predicted targets for pre-training are contextualized latent representations of the inputs, rather than modality-specific, context-independent targets.
The abstract from the paper is the following:
*While the general idea of self-supervised learning is identical across modalities, the actual algorithms and
objectives differ widely because they were developed with a single modality in mind. To get us closer to general
self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech,
NLP or computer vision. The core idea is to predict latent representations of the full input data based on a
masked view of the input in a selfdistillation setup using a standard Transformer architecture.
Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which
are local in nature, data2vec predicts contextualized latent representations that contain information from
the entire input. Experiments on the major benchmarks of speech recognition, image classification, and
natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.
Models and code are available at www.github.com/pytorch/fairseq/tree/master/examples/data2vec.*
Tips:
- Both Data2VecAudio and Data2VecText have been trained using the same self-supervised learning method.
In the case of Data2VecAudio, preprocessing is identical to [`RobertaModel`], including tokenization.
This model was contributed by [edugp](https://huggingface.co/edugp).
The original code can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/data2vec).
## Data2VecTextConfig
[[autodoc]] Data2VecTextConfig
## Data2VecAudioConfig
[[autodoc]] Data2VecAudioConfig
## Data2VecAudioModel
[[autodoc]] Data2VecAudioModel
- forward
## Data2VecAudioForAudioFrameClassification
[[autodoc]] Data2VecAudioForAudioFrameClassification
- forward
## Data2VecAudioForCTC
[[autodoc]] Data2VecAudioForCTC
- forward
## Data2VecAudioForSequenceClassification
[[autodoc]] Data2VecAudioForSequenceClassification
- forward
## Data2VecAudioForXVector
[[autodoc]] Data2VecAudioForXVector
- forward
## Data2VecTextModel
[[autodoc]] Data2VecTextModel
- forward
## Data2VecTextForCausalLM
[[autodoc]] Data2VecTextForCausalLM
- forward
## Data2VecTextForMaskedLM
[[autodoc]] Data2VecTextForMaskedLM
- forward
## Data2VecTextForSequenceClassification
[[autodoc]] Data2VecTextForSequenceClassification
- forward
## Data2VecTextForMultipleChoice
[[autodoc]] Data2VecTextForMultipleChoice
- forward
## Data2VecTextForTokenClassification
[[autodoc]] Data2VecTextForTokenClassification
- forward
## Data2VecTextForQuestionAnswering
[[autodoc]] Data2VecTextForQuestionAnswering
- forward