mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* tmp commit * move tests to the right class * remove ALL all_generative_model_classes = ... * skip tf roberta * skip InstructBlipForConditionalGenerationDecoderOnlyTest * videollava * reduce diff * reduce diff * remove on vlms * fix a few more * manual rebase bits * more manual rebase * remove all manual generative model class test entries * fix up to ernie * a few more removals * handle remaining cases * recurrent gemma * it's better here * make fixup * tf idefics is broken * tf bert + generate is broken * don't touch tf :() * don't touch tf :( * make fixup * better comments for test skips * revert tf changes * remove empty line removal * one more * missing one
433 lines
17 KiB
Python
433 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch OLMoE model."""
|
|
|
|
import unittest
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import OlmoeConfig, is_torch_available, set_seed
|
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
|
from transformers.models.gpt_neox.tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
|
|
from transformers.testing_utils import (
|
|
require_tokenizers,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
OlmoeForCausalLM,
|
|
OlmoeModel,
|
|
)
|
|
|
|
|
|
class OlmoeModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=False,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
hidden_act="silu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
scope=None,
|
|
num_experts_per_tok=2,
|
|
num_experts=8,
|
|
norm_topk_prob=False,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
intermediate_size=12,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_experts = num_experts
|
|
self.norm_topk_prob = norm_topk_prob
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return OlmoeConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
num_experts_per_tok=self.num_experts_per_tok,
|
|
num_experts=self.num_experts,
|
|
norm_topk_prob=self.norm_topk_prob,
|
|
output_router_logits=self.output_router_logits,
|
|
router_aux_loss_coef=self.router_aux_loss_coef,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = OlmoeModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
model = OlmoeModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = OlmoeForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.is_decoder = True
|
|
config.add_cross_attention = True
|
|
model = OlmoeForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class OlmoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (OlmoeModel, OlmoeForCausalLM) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": OlmoeModel,
|
|
"text-generation": OlmoeForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
|
|
# This is because we are hitting edge cases with the causal_mask buffer
|
|
model_split_percents = [0.5, 0.7, 0.8]
|
|
|
|
def setUp(self):
|
|
self.model_tester = OlmoeModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=OlmoeConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="OLMoE does not support head pruning.")
|
|
def test_headmasking(self):
|
|
pass
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="OLMoE buffers include complex numbers, which breaks this test")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@parameterized.expand([("linear",), ("dynamic",)])
|
|
def test_model_rope_scaling(self, scaling_type):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
short_input = ids_tensor([1, 10], config.vocab_size)
|
|
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
original_model = OlmoeModel(config)
|
|
original_model.to(torch_device)
|
|
original_model.eval()
|
|
original_short_output = original_model(short_input).last_hidden_state
|
|
original_long_output = original_model(long_input).last_hidden_state
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
|
|
scaled_model = OlmoeModel(config)
|
|
scaled_model.to(torch_device)
|
|
scaled_model.eval()
|
|
scaled_short_output = scaled_model(short_input).last_hidden_state
|
|
scaled_long_output = scaled_model(long_input).last_hidden_state
|
|
|
|
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
|
|
# maximum sequence length, so the outputs for the short input should match.
|
|
if scaling_type == "dynamic":
|
|
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
|
|
else:
|
|
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
|
|
|
# The output should be different for long inputs
|
|
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
|
|
|
|
|
|
@require_torch
|
|
class OlmoeIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_7b_logits(self):
|
|
input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]]
|
|
model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", device_map="auto")
|
|
out = model(torch.tensor(input_ids)).logits.float()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor([[-1.3814, -3.4450, -2.2990, -1.9542, -2.4387, -2.7941, -2.9312, -2.8309]])
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([-2.3874, -2.4076, -2.4995, 4.2278, 1.4004, -0.0252, 0.4189, -2.7560, 0.3531, 1.6678, -0.7941, -1.1818, -0.2920, 0.7131, -1.4173, 1.6723, 0.5406, 0.1345, -0.1800, 0.2304, 1.2791, 0.7489, 0.6341, -0.0151, -1.3693, -1.2532, -2.3921, 0.7376, 1.6876, 0.5483]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
@slow
|
|
def test_model_7b_greedy_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that \nthe speed of light is the same for all observers, no matter \nhow fast they are moving. This is a very counter-intuitive \nconcept, and it took Einstein a long time to come up with \nthe theory. The theory of relativity is based on two \npostulates"""
|
|
prompt = "Simply put, the theory of relativity states that "
|
|
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924", device_map="auto")
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", device_map="auto")
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@require_tokenizers
|
|
def test_fast_special_tokens(self):
|
|
fast_tokenizer = GPTNeoXTokenizerFast.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
|
|
|
original_add_eos_token = fast_tokenizer.add_eos_token
|
|
|
|
fast_tokenizer.add_eos_token = False
|
|
fast = fast_tokenizer.encode("A sample test")
|
|
self.assertEqual(fast, [34, 3410, 1071])
|
|
|
|
fast_tokenizer.add_eos_token = True
|
|
fast = fast_tokenizer.encode("A sample test")
|
|
self.assertEqual(fast, [34, 3410, 1071, 50279])
|
|
|
|
fast_tokenizer.add_eos_token = original_add_eos_token
|
|
|
|
@require_tokenizers
|
|
def test_simple_encode_decode(self):
|
|
rust_tokenizer = GPTNeoXTokenizerFast.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
|
|
|
self.assertEqual(rust_tokenizer.encode("This is a test"), [1552, 310, 247, 1071])
|
|
self.assertEqual(rust_tokenizer.decode([1552, 310, 247, 1071], skip_special_tokens=True), "This is a test")
|
|
|
|
# bytefallback showcase
|
|
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [20025, 46549, 5225, 48561, 33656, 238, 12105]) # fmt: skip
|
|
self.assertEqual(
|
|
rust_tokenizer.decode([20025, 46549, 5225, 48561, 33656, 238, 12105], skip_special_tokens=True),
|
|
"生活的真谛是",
|
|
)
|
|
|
|
# Inner spaces showcase
|
|
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [12764, 50276, 12092])
|
|
self.assertEqual(rust_tokenizer.decode([12764, 50276, 12092], skip_special_tokens=True), "Hi Hello")
|
|
|
|
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [12764, 50275, 12092])
|
|
self.assertEqual(rust_tokenizer.decode([12764, 50275, 12092], skip_special_tokens=True), "Hi Hello")
|
|
|
|
self.assertEqual(rust_tokenizer.encode(""), [])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" "), [209])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" "), [50276])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" Hello"), [24387])
|