transformers/tests/models/olmo2/test_modeling_olmo2.py
Joao Gante 62c7ea0201
CI: avoid human error, automatically infer generative models (#33212)
* tmp commit

* move tests to the right class

* remove ALL all_generative_model_classes = ...

* skip tf roberta

* skip InstructBlipForConditionalGenerationDecoderOnlyTest

* videollava

* reduce diff

* reduce diff

* remove  on vlms

* fix a few more

* manual rebase bits

* more manual rebase

* remove all manual generative model class test entries

* fix up to ernie

* a few more removals

* handle remaining cases

* recurrent gemma

* it's better here

* make fixup

* tf idefics is broken

* tf bert + generate is broken

* don't touch tf :()

* don't touch tf :(

* make fixup

* better comments for test skips

* revert tf changes

* remove empty line removal

* one more

* missing one
2025-02-13 16:27:11 +01:00

468 lines
19 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch OLMo2 model."""
import unittest
from packaging import version
from parameterized import parameterized
from transformers import Olmo2Config, is_torch_available, set_seed
from transformers.generation.configuration_utils import GenerationConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.testing_utils import (
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
Olmo2ForCausalLM,
Olmo2Model,
)
class Olmo2ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="silu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return Olmo2Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = Olmo2Model(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = Olmo2Model(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = Olmo2ForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = Olmo2ForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class Olmo2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Olmo2Model, Olmo2ForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": Olmo2Model,
"text-generation": Olmo2ForCausalLM,
}
if is_torch_available()
else {}
)
test_pruning = False
fx_compatible = False
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
def setUp(self):
self.model_tester = Olmo2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Olmo2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OLMo2 does not support head pruning.")
def test_headmasking(self):
pass
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OLMo2 buffers include complex numbers, which breaks this test")
def test_save_load_fast_init_from_base(self):
pass
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = Olmo2Model(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = Olmo2Model(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@require_torch
class Olmo2IntegrationTest(unittest.TestCase):
@slow
def test_model_7b_logits(self):
input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]]
model = Olmo2ForCausalLM.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
out = model(torch.tensor(input_ids)).logits.float()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor(
[[-13.0244, -13.9564, -11.8270, -11.3047, -12.3794, -12.4215, -15.6030, -12.7962]]
)
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([-5.3909, -13.9841, -13.6123, -14.5780, -13.9455, -13.2265, -13.4734, -11.9079, -9.2879, -12.6139, -11.4819, -5.9607, -11.9657, -6.3618, -11.1065, -7.3075, -6.5674, -6.7154, -7.3409, -7.9662, -8.0863, -8.1682, -8.7341, -8.7665, -8.8742, -9.7813, -8.0620, -12.5937, -7.6440, -11.3966]) # fmt: skip
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
@slow
def test_model_7b_greedy_generation(self):
EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light is the fastest speed possible, and 3) the speed of light is the same for all observers, regardless of their relative motion. The theory of relativity is based on the idea that the speed of light is constant. This means that"""
prompt = "Simply put, the theory of relativity states that "
tokenizer = AutoTokenizer.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
model = Olmo2ForCausalLM.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@require_tokenizers
def test_simple_encode_decode(self):
rust_tokenizer = AutoTokenizer.from_pretrained("shanearora/OLMo2-7B-1124-hf")
self.assertEqual(rust_tokenizer.encode("This is a test"), [2028, 374, 264, 1296])
self.assertEqual(rust_tokenizer.decode([2028, 374, 264, 1296], skip_special_tokens=True), "This is a test")
# bytefallback showcase
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [21990, 76706, 9554, 89151, 39013, 249, 21043]) # fmt: skip
self.assertEqual(
rust_tokenizer.decode([21990, 76706, 9554, 89151, 39013, 249, 21043], skip_special_tokens=True),
"生活的真谛是",
)
# Inner spaces showcase
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [13347, 220, 22691])
self.assertEqual(rust_tokenizer.decode([13347, 220, 22691], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [13347, 256, 22691])
self.assertEqual(rust_tokenizer.decode([13347, 256, 22691], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.encode(""), [])
self.assertEqual(rust_tokenizer.encode(" "), [220])
self.assertEqual(rust_tokenizer.encode(" "), [256])
self.assertEqual(rust_tokenizer.encode(" Hello"), [22691])
@slow
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
olmo2_model = "shanearora/OLMo2-7B-1124-hf"
tokenizer = AutoTokenizer.from_pretrained(olmo2_model, pad_token="</s>", padding_side="right")
EXPECTED_TEXT_COMPLETION = [
"Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light",
]
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
generation_config = GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
},
)
model = Olmo2ForCausalLM.from_pretrained(
olmo2_model,
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=generation_config,
)
prompts = ["Simply put, the theory of relativity states that "]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
# Static Cache + eager
eager_generated_ids = model.generate(
**prompt_tokens, max_new_tokens=max_new_tokens, do_sample=False, cache_implementation=cache_implementation
)
eager_generated_text = tokenizer.batch_decode(eager_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, eager_generated_text)
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)