mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
565 lines
23 KiB
Python
Executable File
565 lines
23 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...)
|
|
on a text file or a dataset without using HuggingFace Trainer.
|
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
|
https://huggingface.co/models?filter=masked-lm
|
|
"""
|
|
# You can also adapt this script on your own mlm task. Pointers for this are left as comments.
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import datasets
|
|
import torch
|
|
from datasets import load_dataset
|
|
from torch.utils.data import DataLoader
|
|
from tqdm.auto import tqdm
|
|
|
|
import transformers
|
|
from accelerate import Accelerator, DistributedType
|
|
from huggingface_hub import Repository
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
MODEL_MAPPING,
|
|
AdamW,
|
|
AutoConfig,
|
|
AutoModelForMaskedLM,
|
|
AutoTokenizer,
|
|
DataCollatorForLanguageModeling,
|
|
SchedulerType,
|
|
get_scheduler,
|
|
set_seed,
|
|
)
|
|
from transformers.file_utils import get_full_repo_name
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Finetune a transformers model on a Masked Language Modeling task")
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the dataset to use (via the datasets library).",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The configuration name of the dataset to use (via the datasets library).",
|
|
)
|
|
parser.add_argument(
|
|
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
|
|
)
|
|
parser.add_argument(
|
|
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
|
|
)
|
|
parser.add_argument(
|
|
"--validation_split_percentage",
|
|
default=5,
|
|
help="The percentage of the train set used as validation set in case there's no validation split",
|
|
)
|
|
parser.add_argument(
|
|
"--pad_to_max_length",
|
|
action="store_true",
|
|
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
type=str,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
required=True,
|
|
)
|
|
parser.add_argument(
|
|
"--config_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained config name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--use_slow_tokenizer",
|
|
action="store_true",
|
|
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_train_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the training dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_eval_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the evaluation dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-5,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler_type",
|
|
type=SchedulerType,
|
|
default="linear",
|
|
help="The scheduler type to use.",
|
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
|
)
|
|
parser.add_argument(
|
|
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--model_type",
|
|
type=str,
|
|
default=None,
|
|
help="Model type to use if training from scratch.",
|
|
choices=MODEL_TYPES,
|
|
)
|
|
parser.add_argument(
|
|
"--max_seq_length",
|
|
type=int,
|
|
default=None,
|
|
help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.",
|
|
)
|
|
parser.add_argument(
|
|
"--line_by_line",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
|
|
)
|
|
parser.add_argument(
|
|
"--preprocessing_num_workers",
|
|
type=int,
|
|
default=None,
|
|
help="The number of processes to use for the preprocessing.",
|
|
)
|
|
parser.add_argument(
|
|
"--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets"
|
|
)
|
|
parser.add_argument(
|
|
"--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
|
|
)
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
|
|
)
|
|
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
|
|
args = parser.parse_args()
|
|
|
|
# Sanity checks
|
|
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if args.train_file is not None:
|
|
extension = args.train_file.split(".")[-1]
|
|
if extension not in ["csv", "json", "txt"]:
|
|
raise ValueError("`train_file` should be a csv, json or txt file.")
|
|
if args.validation_file is not None:
|
|
extension = args.validation_file.split(".")[-1]
|
|
if extension not in ["csv", "json", "txt"]:
|
|
raise ValueError("`validation_file` should be a csv, json or txt file.")
|
|
|
|
if args.push_to_hub:
|
|
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
|
accelerator = Accelerator()
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state)
|
|
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
# accelerator.is_local_main_process is only True for one process per machine.
|
|
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.push_to_hub:
|
|
if args.hub_model_id is None:
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
|
else:
|
|
repo_name = args.hub_model_id
|
|
repo = Repository(args.output_dir, clone_from=repo_name)
|
|
elif args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
|
# 'text' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
|
|
if "validation" not in raw_datasets.keys():
|
|
raw_datasets["validation"] = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
split=f"train[:{args.validation_split_percentage}%]",
|
|
)
|
|
raw_datasets["train"] = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
split=f"train[{args.validation_split_percentage}%:]",
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if args.train_file is not None:
|
|
data_files["train"] = args.train_file
|
|
if args.validation_file is not None:
|
|
data_files["validation"] = args.validation_file
|
|
extension = args.train_file.split(".")[-1]
|
|
if extension == "txt":
|
|
extension = "text"
|
|
raw_datasets = load_dataset(extension, data_files=data_files)
|
|
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
|
if "validation" not in raw_datasets.keys():
|
|
raw_datasets["validation"] = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
split=f"train[:{args.validation_split_percentage}%]",
|
|
)
|
|
raw_datasets["train"] = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
split=f"train[{args.validation_split_percentage}%:]",
|
|
)
|
|
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
if args.config_name:
|
|
config = AutoConfig.from_pretrained(args.config_name)
|
|
elif args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path)
|
|
else:
|
|
config = CONFIG_MAPPING[args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
|
|
if args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
|
|
elif args.model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
|
|
else:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
if args.model_name_or_path:
|
|
model = AutoModelForMaskedLM.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
|
config=config,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelForMaskedLM.from_config(config)
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
# Preprocessing the datasets.
|
|
# First we tokenize all the texts.
|
|
column_names = raw_datasets["train"].column_names
|
|
text_column_name = "text" if "text" in column_names else column_names[0]
|
|
|
|
if args.max_seq_length is None:
|
|
max_seq_length = tokenizer.model_max_length
|
|
if max_seq_length > 1024:
|
|
logger.warning(
|
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
|
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
|
|
)
|
|
max_seq_length = 1024
|
|
else:
|
|
if args.max_seq_length > tokenizer.model_max_length:
|
|
logger.warning(
|
|
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
|
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
|
)
|
|
max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
|
|
|
if args.line_by_line:
|
|
# When using line_by_line, we just tokenize each nonempty line.
|
|
padding = "max_length" if args.pad_to_max_length else False
|
|
|
|
def tokenize_function(examples):
|
|
# Remove empty lines
|
|
examples[text_column_name] = [
|
|
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
|
|
]
|
|
return tokenizer(
|
|
examples[text_column_name],
|
|
padding=padding,
|
|
truncation=True,
|
|
max_length=max_seq_length,
|
|
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
|
|
# receives the `special_tokens_mask`.
|
|
return_special_tokens_mask=True,
|
|
)
|
|
|
|
with accelerator.main_process_first():
|
|
tokenized_datasets = raw_datasets.map(
|
|
tokenize_function,
|
|
batched=True,
|
|
num_proc=args.preprocessing_num_workers,
|
|
remove_columns=[text_column_name],
|
|
load_from_cache_file=not args.overwrite_cache,
|
|
desc="Running tokenizer on dataset line_by_line",
|
|
)
|
|
else:
|
|
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
|
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
|
|
# efficient when it receives the `special_tokens_mask`.
|
|
def tokenize_function(examples):
|
|
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
|
|
|
|
with accelerator.main_process_first():
|
|
tokenized_datasets = raw_datasets.map(
|
|
tokenize_function,
|
|
batched=True,
|
|
num_proc=args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not args.overwrite_cache,
|
|
desc="Running tokenizer on every text in dataset",
|
|
)
|
|
|
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
|
|
# max_seq_length.
|
|
def group_texts(examples):
|
|
# Concatenate all texts.
|
|
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
|
# customize this part to your needs.
|
|
if total_length >= max_seq_length:
|
|
total_length = (total_length // max_seq_length) * max_seq_length
|
|
# Split by chunks of max_len.
|
|
result = {
|
|
k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
|
|
for k, t in concatenated_examples.items()
|
|
}
|
|
return result
|
|
|
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
|
|
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
|
|
# might be slower to preprocess.
|
|
#
|
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
|
|
|
with accelerator.main_process_first():
|
|
tokenized_datasets = tokenized_datasets.map(
|
|
group_texts,
|
|
batched=True,
|
|
num_proc=args.preprocessing_num_workers,
|
|
load_from_cache_file=not args.overwrite_cache,
|
|
desc=f"Grouping texts in chunks of {max_seq_length}",
|
|
)
|
|
|
|
train_dataset = tokenized_datasets["train"]
|
|
eval_dataset = tokenized_datasets["validation"]
|
|
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
# Data collator
|
|
# This one will take care of randomly masking the tokens.
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=args.mlm_probability)
|
|
|
|
# DataLoaders creation:
|
|
train_dataloader = DataLoader(
|
|
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
|
|
)
|
|
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
|
|
|
|
# Optimizer
|
|
# Split weights in two groups, one with weight decay and the other not.
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
|
model, optimizer, train_dataloader, eval_dataloader
|
|
)
|
|
|
|
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
|
|
if accelerator.distributed_type == DistributedType.TPU:
|
|
model.tie_weights()
|
|
|
|
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
|
|
# shorter in multiprocess)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
else:
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
lr_scheduler = get_scheduler(
|
|
name=args.lr_scheduler_type,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.num_warmup_steps,
|
|
num_training_steps=args.max_train_steps,
|
|
)
|
|
|
|
# Train!
|
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
|
completed_steps = 0
|
|
|
|
for epoch in range(args.num_train_epochs):
|
|
model.train()
|
|
for step, batch in enumerate(train_dataloader):
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
loss = loss / args.gradient_accumulation_steps
|
|
accelerator.backward(loss)
|
|
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
progress_bar.update(1)
|
|
completed_steps += 1
|
|
|
|
if completed_steps >= args.max_train_steps:
|
|
break
|
|
|
|
model.eval()
|
|
losses = []
|
|
for step, batch in enumerate(eval_dataloader):
|
|
with torch.no_grad():
|
|
outputs = model(**batch)
|
|
|
|
loss = outputs.loss
|
|
losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size)))
|
|
|
|
losses = torch.cat(losses)
|
|
losses = losses[: len(eval_dataset)]
|
|
try:
|
|
perplexity = math.exp(torch.mean(losses))
|
|
except OverflowError:
|
|
perplexity = float("inf")
|
|
|
|
logger.info(f"epoch {epoch}: perplexity: {perplexity}")
|
|
|
|
if args.push_to_hub and epoch < args.num_train_epochs - 1:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
|
|
if accelerator.is_main_process:
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
repo.push_to_hub(commit_message=f"Training in progress epoch {epoch}", blocking=False)
|
|
|
|
if args.output_dir is not None:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
|
|
if accelerator.is_main_process:
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
if args.push_to_hub:
|
|
repo.push_to_hub(commit_message="End of training")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|