transformers/model_cards/facebook/rag-token-nq
Patrick von Platen 5ff0d6d7d0
Update README.md
2020-09-25 16:58:29 +02:00
..
README.md Update README.md 2020-09-25 16:58:29 +02:00

RAG

This is the RAG-Token Model of the the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.

Usage:


from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration

tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)

input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt")

generated = model.generate(input_ids=input_dict["input_ids"])
print(tokenizer.batch_decode(generated, skip_special_tokens=True)[0])

# generated_string should give 270,000,000 -> a bit too many I think