mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* Make gradient_checkpointing a training argument * Update src/transformers/modeling_utils.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * Update src/transformers/configuration_utils.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * Fix tests * Style * document Gradient Checkpointing as a performance feature * Small rename * PoC for not using the config * Adapt BC to new PoC * Forgot to save * Rollout changes to all other models * Fix typo Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> Co-authored-by: Stas Bekman <stas@stason.org>
151 lines
6.5 KiB
ReStructuredText
151 lines
6.5 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
LED
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The LED model was proposed in `Longformer: The Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz
|
|
Beltagy, Matthew E. Peters, Arman Cohan.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
|
|
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
|
|
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
|
|
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
|
|
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
|
|
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
|
|
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
|
|
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
|
|
WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting
|
|
long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization
|
|
dataset.*
|
|
|
|
Tips:
|
|
|
|
- :class:`~transformers.LEDForConditionalGeneration` is an extension of
|
|
:class:`~transformers.BartForConditionalGeneration` exchanging the traditional *self-attention* layer with
|
|
*Longformer*'s *chunked self-attention* layer. :class:`~transformers.LEDTokenizer` is an alias of
|
|
:class:`~transformers.BartTokenizer`.
|
|
- LED works very well on long-range *sequence-to-sequence* tasks where the ``input_ids`` largely exceed a length of
|
|
1024 tokens.
|
|
- LED pads the ``input_ids`` to be a multiple of ``config.attention_window`` if required. Therefore a small speed-up is
|
|
gained, when :class:`~transformers.LEDTokenizer` is used with the ``pad_to_multiple_of`` argument.
|
|
- LED makes use of *global attention* by means of the ``global_attention_mask`` (see
|
|
:class:`~transformers.LongformerModel`). For summarization, it is advised to put *global attention* only on the first
|
|
``<s>`` token. For question answering, it is advised to put *global attention* on all tokens of the question.
|
|
- To fine-tune LED on all 16384, it is necessary to enable *gradient checkpointing* by executing
|
|
``model.gradient_checkpointing_enable()``.
|
|
- A notebook showing how to evaluate LED, can be accessed `here
|
|
<https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing>`__.
|
|
- A notebook showing how to fine-tune LED, can be accessed `here
|
|
<https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing>`__.
|
|
|
|
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__.
|
|
|
|
|
|
LEDConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDConfig
|
|
:members:
|
|
|
|
|
|
LEDTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDTokenizer
|
|
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
|
|
create_token_type_ids_from_sequences, save_vocabulary
|
|
|
|
|
|
LEDTokenizerFast
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDTokenizerFast
|
|
:members:
|
|
|
|
|
|
LED specific outputs
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.models.led.modeling_led.LEDEncoderBaseModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_led.LEDSeq2SeqModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_led.LEDSeq2SeqLMOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_tf_led.TFLEDEncoderBaseModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput
|
|
:members:
|
|
|
|
|
|
|
|
|
|
LEDModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDModel
|
|
:members: forward
|
|
|
|
|
|
LEDForConditionalGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDForConditionalGeneration
|
|
:members: forward
|
|
|
|
|
|
LEDForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDForSequenceClassification
|
|
:members: forward
|
|
|
|
|
|
LEDForQuestionAnswering
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.LEDForQuestionAnswering
|
|
:members: forward
|
|
|
|
|
|
TFLEDModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFLEDModel
|
|
:members: call
|
|
|
|
|
|
TFLEDForConditionalGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFLEDForConditionalGeneration
|
|
:members: call
|