transformers/examples/translation/t5/evaluate_wmt.py
Patrick von Platen 5ad2ea06af
Add wmt translation example (#3428)
* add translation example

* make style

* adapt docstring

* add gpu device as input for example

* small renaming

* better README
2020-03-26 19:07:59 +01:00

91 lines
3.0 KiB
Python

import argparse
from pathlib import Path
import torch
from tqdm import tqdm
from sacrebleu import corpus_bleu
from transformers import T5ForConditionalGeneration, T5Tokenizer
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def generate_translations(lns, output_file_path, batch_size, device):
output_file = Path(output_file_path).open("w")
model = T5ForConditionalGeneration.from_pretrained("t5-base")
model.to(device)
tokenizer = T5Tokenizer.from_pretrained("t5-base")
# update config with summarization specific params
task_specific_params = model.config.task_specific_params
if task_specific_params is not None:
model.config.update(task_specific_params.get("translation_en_to_de", {}))
for batch in tqdm(list(chunks(lns, batch_size))):
batch = [model.config.prefix + text for text in batch]
dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True)
input_ids = dct["input_ids"].to(device)
attention_mask = dct["attention_mask"].to(device)
translations = model.generate(input_ids=input_ids, attention_mask=attention_mask)
dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in translations]
for hypothesis in dec:
output_file.write(hypothesis + "\n")
output_file.flush()
def calculate_bleu_score(output_lns, refs_lns, score_path):
bleu = corpus_bleu(output_lns, [refs_lns])
result = "BLEU score: {}".format(bleu.score)
score_file = Path(score_path).open("w")
score_file.write(result)
def run_generate():
parser = argparse.ArgumentParser()
parser.add_argument(
"input_path", type=str, help="like wmt/newstest2013.en",
)
parser.add_argument(
"output_path", type=str, help="where to save translation",
)
parser.add_argument(
"reference_path", type=str, help="like wmt/newstest2013.de",
)
parser.add_argument(
"score_path", type=str, help="where to save the bleu score",
)
parser.add_argument(
"--batch_size", type=int, default=16, required=False, help="batch size: how many to summarize at a time",
)
parser.add_argument(
"--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.",
)
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
dash_pattern = (" ##AT##-##AT## ", "-")
input_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.input_path).readlines()]
generate_translations(input_lns, args.output_path, args.batch_size, args.device)
output_lns = [x.strip() for x in open(args.output_path).readlines()]
refs_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.reference_path).readlines()]
calculate_bleu_score(output_lns, refs_lns, args.score_path)
if __name__ == "__main__":
run_generate()