mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 23:00:08 +06:00
361 lines
15 KiB
Python
361 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from .utils import require_torch, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from transformers import (
|
|
RobertaConfig,
|
|
RobertaModel,
|
|
RobertaForMaskedLM,
|
|
RobertaForMultipleChoice,
|
|
RobertaForQuestionAnswering,
|
|
RobertaForSequenceClassification,
|
|
RobertaForTokenClassification,
|
|
)
|
|
from transformers.modeling_roberta import RobertaEmbeddings, create_position_ids_from_input_ids
|
|
from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
class RobertaModelTester:
|
|
def __init__(
|
|
self, parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_mask = True
|
|
self.use_token_type_ids = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 5
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = RobertaConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def check_loss_output(self, result):
|
|
self.parent.assertListEqual(list(result["loss"].size()), [])
|
|
|
|
def create_and_check_roberta_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = RobertaModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
|
|
sequence_output, pooled_output = model(input_ids)
|
|
|
|
result = {
|
|
"sequence_output": sequence_output,
|
|
"pooled_output": pooled_output,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
|
|
)
|
|
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
|
|
|
|
def create_and_check_roberta_for_masked_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = RobertaForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, prediction_scores = model(
|
|
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"prediction_scores": prediction_scores,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
|
|
)
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_roberta_for_token_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = RobertaForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_roberta_for_multiple_choice(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = RobertaForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
loss, logits = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
token_type_ids=multiple_choice_token_type_ids,
|
|
labels=choice_labels,
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
|
|
self.check_loss_output(result)
|
|
|
|
def create_and_check_roberta_for_question_answering(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = RobertaForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
loss, start_logits, end_logits = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
result = {
|
|
"loss": loss,
|
|
"start_logits": start_logits,
|
|
"end_logits": end_logits,
|
|
}
|
|
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
|
|
self.check_loss_output(result)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class RobertaModelTest(ModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(
|
|
RobertaForMaskedLM,
|
|
RobertaModel,
|
|
RobertaForSequenceClassification,
|
|
RobertaForTokenClassification,
|
|
RobertaForMultipleChoice,
|
|
RobertaForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
|
|
def setUp(self):
|
|
self.model_tester = RobertaModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_roberta_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = RobertaModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_create_position_ids_respects_padding_index(self):
|
|
""" Ensure that the default position ids only assign a sequential . This is a regression
|
|
test for https://github.com/huggingface/transformers/issues/1761
|
|
|
|
The position ids should be masked with the embedding object's padding index. Therefore, the
|
|
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
|
|
"""
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
model = RobertaEmbeddings(config=config)
|
|
|
|
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
|
|
expected_positions = torch.as_tensor(
|
|
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
|
|
)
|
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
|
|
self.assertEqual(position_ids.shape, expected_positions.shape)
|
|
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
|
|
|
|
def test_create_position_ids_from_inputs_embeds(self):
|
|
""" Ensure that the default position ids only assign a sequential . This is a regression
|
|
test for https://github.com/huggingface/transformers/issues/1761
|
|
|
|
The position ids should be masked with the embedding object's padding index. Therefore, the
|
|
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
|
|
"""
|
|
config = self.model_tester.prepare_config_and_inputs()[0]
|
|
embeddings = RobertaEmbeddings(config=config)
|
|
|
|
inputs_embeds = torch.Tensor(2, 4, 30)
|
|
expected_single_positions = [
|
|
0 + embeddings.padding_idx + 1,
|
|
1 + embeddings.padding_idx + 1,
|
|
2 + embeddings.padding_idx + 1,
|
|
3 + embeddings.padding_idx + 1,
|
|
]
|
|
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
|
|
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
|
|
self.assertEqual(position_ids.shape, expected_positions.shape)
|
|
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
|
|
|
|
|
|
class RobertaModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
model = RobertaForMaskedLM.from_pretrained("roberta-base")
|
|
|
|
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = torch.Size((1, 11, 50265))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
# compare the actual values for a slice.
|
|
expected_slice = torch.tensor(
|
|
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
|
|
)
|
|
|
|
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
|
|
# roberta.eval()
|
|
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
|
|
|
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
model = RobertaModel.from_pretrained("roberta-base")
|
|
|
|
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
# compare the actual values for a slice.
|
|
expected_slice = torch.tensor(
|
|
[[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
|
|
)
|
|
|
|
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
|
|
# roberta.eval()
|
|
# expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()
|
|
|
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_classification_head(self):
|
|
model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
|
|
|
|
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = torch.Size((1, 3))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])
|
|
|
|
# roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
|
|
# roberta.eval()
|
|
# expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()
|
|
|
|
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
|