mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* [chameleon] fix num image token check * embed after merging image token * skip this also * mistral require_read_token
560 lines
23 KiB
Python
560 lines
23 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch chameleon model."""
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import requests
|
|
from parameterized import parameterized
|
|
|
|
from transformers import ChameleonConfig, is_torch_available, is_vision_available, set_seed
|
|
from transformers.testing_utils import (
|
|
require_bitsandbytes,
|
|
require_read_token,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
ChameleonForConditionalGeneration,
|
|
ChameleonModel,
|
|
ChameleonProcessor,
|
|
)
|
|
|
|
|
|
class ChameleonModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=35,
|
|
is_training=False,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
image_token_id=4,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
vq_num_embeds=5,
|
|
vq_embed_dim=5,
|
|
vq_channel_multiplier=[1, 4],
|
|
vq_img_token_start_id=10, # has to be less than vocab size when added with vq_num_embeds
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.image_token_id = image_token_id
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
self.vq_num_embeds = vq_num_embeds
|
|
self.vq_embed_dim = vq_embed_dim
|
|
self.vq_channel_multiplier = vq_channel_multiplier
|
|
self.vq_img_token_start_id = vq_img_token_start_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
# create dummy vocab map for image2bpe mapping if it needs remapping
|
|
# we assume that vocab size is big enough to accoun for image tokens somewhere in the beginning
|
|
# same way as in real ckpt, when img tokens are in first half of embeds
|
|
# we will need "vq_num_embeds" amount of tokens
|
|
|
|
vocab_map = {i: chr(i) for i in range(self.vocab_size)}
|
|
vocab_map[self.image_token_id] = "<image>"
|
|
start = self.vq_img_token_start_id
|
|
end = self.vq_img_token_start_id + self.vq_num_embeds
|
|
for i in range(start, end):
|
|
image_token_infix = "".join(chr(ord("A") + int(c)) for c in str(i))
|
|
# dummy str for each image token, anything starting with IMGIMG
|
|
vocab_map[i] = f"IMGIMG{image_token_infix}Z"
|
|
|
|
return ChameleonConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
vocabulary_map={v: k for k, v in vocab_map.items()},
|
|
vq_config=self.get_vq_config(),
|
|
)
|
|
|
|
def get_vq_config(self):
|
|
return {
|
|
"embed_dim": self.vq_embed_dim,
|
|
"num_embeddings": self.vq_num_embeds,
|
|
"latent_channels": self.vq_embed_dim,
|
|
"in_channels": 3,
|
|
"base_channels": 32, # we have a GroupNorm of 32 groups, so can't do less
|
|
"channel_multiplier": self.vq_channel_multiplier,
|
|
}
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
|
model = ChameleonModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = ChameleonForConditionalGeneration(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.is_decoder = True
|
|
model = ChameleonForConditionalGeneration(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ChameleonModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (ChameleonModel, ChameleonForConditionalGeneration) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": ChameleonModel,
|
|
"text-generation": ChameleonForConditionalGeneration,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = ChameleonModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ChameleonConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@parameterized.expand([("linear",), ("dynamic",)])
|
|
def test_model_rope_scaling(self, scaling_type):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
short_input = ids_tensor([1, 10], config.vocab_size)
|
|
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
original_model = ChameleonModel(config)
|
|
original_model.to(torch_device)
|
|
original_model.eval()
|
|
original_short_output = original_model(short_input).last_hidden_state
|
|
original_long_output = original_model(long_input).last_hidden_state
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
|
|
scaled_model = ChameleonModel(config)
|
|
scaled_model.to(torch_device)
|
|
scaled_model.eval()
|
|
scaled_short_output = scaled_model(short_input).last_hidden_state
|
|
scaled_long_output = scaled_model(long_input).last_hidden_state
|
|
|
|
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
|
|
# maximum sequence length, so the outputs for the short input should match.
|
|
if scaling_type == "dynamic":
|
|
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
|
|
else:
|
|
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
|
|
|
# The output should be different for long inputs
|
|
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
|
|
|
|
@unittest.skip("Chameleon forces some token ids to be -inf!")
|
|
def test_batching_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip("Chameleon VQ model cannot be squishes more due to hardcoded layer params in model code")
|
|
def test_model_is_small(self):
|
|
pass
|
|
|
|
|
|
class ChameleonVision2SeqModelTester(ChameleonModelTester):
|
|
def __init__(self, parent, image_size=10, **kwargs):
|
|
super().__init__(parent, **kwargs)
|
|
self.image_size = image_size
|
|
self.image_seq_length = 25
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids[input_ids == self.image_token_id] = self.pad_token_id
|
|
input_ids[:, : self.image_seq_length] = self.image_token_id
|
|
attention_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
pixel_values = floats_tensor([self.batch_size, 3, self.image_size, self.image_size])
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, pixel_values = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ChameleonVision2SeqModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (ChameleonModel, ChameleonForConditionalGeneration) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-text-to-text": ChameleonForConditionalGeneration,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = ChameleonVision2SeqModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ChameleonConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip("Chameleon forces some token ids to be -inf!")
|
|
def test_batching_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip("Chameleon cannot do offload because it uses `self.linear.weight` in forward")
|
|
def test_cpu_offload(self):
|
|
pass
|
|
|
|
@unittest.skip("Chameleon cannot do offload because it uses `self.linear.weight` in forward")
|
|
def test_disk_offload_bin(self):
|
|
pass
|
|
|
|
@unittest.skip("Chameleon cannot do offload because it uses `self.linear.weight` in forward")
|
|
def test_disk_offload_safetensors(self):
|
|
pass
|
|
|
|
@unittest.skip("Chameleon VQ model cannot be squishes more due to hardcoded layer params in model code")
|
|
def test_model_is_small(self):
|
|
pass
|
|
|
|
def test_mismatching_num_image_tokens(self):
|
|
"""
|
|
Tests that VLMs through an error with explicit message saying what is wrong
|
|
when number of images don't match number of image tokens in the text.
|
|
Also we need to test multi-image cases when one prompr has multiple image tokens.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
curr_input_dict = copy.deepcopy(input_dict) # the below tests modify dict in-place
|
|
_ = model(**curr_input_dict) # successful forward with no modifications
|
|
|
|
# remove one image but leave the image token in text
|
|
curr_input_dict["pixel_values"] = curr_input_dict["pixel_values"][-1:, ...]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**curr_input_dict)
|
|
|
|
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
|
|
input_ids = curr_input_dict["input_ids"][:1]
|
|
pixel_values = curr_input_dict["pixel_values"][:1]
|
|
input_ids = torch.cat([input_ids, input_ids], dim=0)
|
|
|
|
# one image and two image tokens raise an error
|
|
with self.assertRaises(ValueError):
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
# two images and two image tokens don't raise an error
|
|
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
|
|
@require_torch
|
|
class ChameleonIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_7b(self):
|
|
model = ChameleonForConditionalGeneration.from_pretrained(
|
|
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
|
|
)
|
|
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
|
|
|
|
image = Image.open(
|
|
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
|
|
)
|
|
prompt = "<image>Describe what do you see here and tell me about the history behind it?"
|
|
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, torch.float16)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = ['Describe what do you see here and tell me about the history behind it?The image depicts a star map, with a bright blue dot in the center representing the star Alpha Centauri. The star map is a representation of the night sky, showing the positions of stars in'] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_7b_batched(self):
|
|
model = ChameleonForConditionalGeneration.from_pretrained(
|
|
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
|
|
)
|
|
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
|
|
|
|
image = Image.open(
|
|
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
|
|
)
|
|
image_2 = Image.open(
|
|
requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw
|
|
)
|
|
prompts = [
|
|
"<image>Describe what do you see here and tell me about the history behind it?",
|
|
"What constellation is this image showing?<image>",
|
|
]
|
|
|
|
inputs = processor(images=[image, image_2], text=prompts, padding=True, return_tensors="pt").to(
|
|
model.device, torch.float16
|
|
)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
'Describe what do you see here and tell me about the history behind it?The image depicts a star map, with a bright blue dot in the center representing the star Alpha Centauri. The star map is a representation of the night sky, showing the positions of stars in',
|
|
'What constellation is this image showing?The image shows the constellation of Orion.The image shows the constellation of Orion.The image shows the constellation of Orion.The image shows the constellation of Orion.'
|
|
] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_7b_multi_image(self):
|
|
model = ChameleonForConditionalGeneration.from_pretrained(
|
|
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
|
|
)
|
|
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
|
|
|
|
image = Image.open(
|
|
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
|
|
)
|
|
image_2 = Image.open(
|
|
requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw
|
|
)
|
|
prompt = "What do these two images have in common?<image><image>"
|
|
|
|
inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.float16)
|
|
|
|
# greedy generation outputs
|
|
EXPECTED_TEXT_COMPLETION = ['What do these two images have in common?The two images show a connection between the night sky and the internet. The first image shows a starry night sky, with the stars arranged in a pattern that resembles the structure of the internet. The'] # fmt: skip
|
|
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
|
|
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|