transformers/docs/source/model_doc/fsmt.rst
Sylvain Gugger 3323146e90
Models doc (#7345)
* Clean up model documentation

* Formatting

* Preparation work

* Long lines

* Main work on rst files

* Cleanup all config files

* Syntax fix

* Clean all tokenizers

* Work on first models

* Models beginning

* FaluBERT

* All PyTorch models

* All models

* Long lines again

* Fixes

* More fixes

* Update docs/source/model_doc/bert.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/electra.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Last fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-09-23 13:20:45 -04:00

61 lines
3.0 KiB
ReStructuredText

FSMT
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__ and assign
@stas00.
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FSMT (FairSeq MachineTranslation) models were introduced in `Facebook FAIR's WMT19 News Translation Task Submission
<https://arxiv.org/abs/1907.06616>`__ by Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, Sergey Edunov.
The abstract of the paper is the following:
*This paper describes Facebook FAIR's submission to the WMT19 shared news translation task. We participate in two
language pairs and four language directions, English <-> German and English <-> Russian. Following our submission from
last year, our baseline systems are large BPE-based transformer models trained with the Fairseq sequence modeling
toolkit which rely on sampled back-translations. This year we experiment with different bitext data filtering schemes,
as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific
data, then decode using noisy channel model reranking. Our submissions are ranked first in all four directions of the
human evaluation campaign. On En->De, our system significantly outperforms other systems as well as human translations.
This system improves upon our WMT'18 submission by 4.5 BLEU points.*
The original code can be found here <https://github.com/pytorch/fairseq/tree/master/examples/wmt19>__.
Implementation Notes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- FSMT uses source and target vocabulary pairs that aren't combined into one. It doesn't share embeddings tokens
either. Its tokenizer is very similar to :class:`~transformers.XLMTokenizer` and the main model is derived from
:class:`~transformers.BartModel`.
FSMTConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTConfig
:members:
FSMTTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, prepare_seq2seq_batch, save_vocabulary
FSMTModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTModel
:members: forward
FSMTForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTForConditionalGeneration
:members: forward