transformers/docs/source/main_classes/callback.rst
Sylvain Gugger 08ba4b4902
Trainer callbacks (#7596)
* Initial callback proposal

* Finish various callbacks

* Post-rebase conflicts

* Fix tests

* Don't use something that's not set

* Documentation

* Remove unwanted print.

* Document all models can work

* Add tests + small fixes

* Update docs/source/internal/trainer_utils.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments

* Fix TF tests

* Real fix this time

* This one should work

* Fix typo

* Really fix typo

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-10-07 10:50:21 -04:00

69 lines
3.1 KiB
ReStructuredText

Callbacks
-----------------------------------------------------------------------------------------------------------------------
Callbacks are objects that can customize the behavior of the training loop in the PyTorch
:class:`~transformers.Trainer` (this feature is not yet implemented in TensorFlow) that can inspect the training loop
state (for progress reporting, logging on TensorBoard or other ML platforms...) and take decisions (like early
stopping).
Callbacks are "read only" pieces of code, apart from the :class:`~transformers.TrainerControl` object they return, they
cannot change anything in the training loop. For customizations that require changes in the training loop, you should
subclass :class:`~transformers.Trainer` and override the methods you need (see :doc:`trainer` for examples).
By default a :class:`~transformers.Trainer` will use the following callbacks:
- :class:`~transformers.DefaultFlowCallback` which handles the default beahvior for logging, saving and evaluation.
- :class:`~transformers.PrinterCallback` or :class:`~transformers.ProrgressCallback` to display progress and print the
logs (the first one is used if you deactivate tqdm through the :class:`~transformers.TrainingArguments`, otherwise
it's the second one).
- :class:`~transformers.integrations.TensorBoardCallback` if tensorboard is accessible (either through PyTorch >= 1.4
or tensorboardX).
- :class:`~transformers.integrations.WandbCallback` if `wandb <https://www.wandb.com/>`__ is installed.
- :class:`~transformers.integrations.CometCallback` if `comet_ml <https://www.comet.ml/site/>`__ is installed.
The main class that implements callbacks is :class:`~transformers.TrainerCallback`. It gets the
:class:`~transformers.TrainingArguments` used to instantiate the :class:`~transformers.Trainer`, can access that
Trainer's internal state via :class:`~transformers.TrainerState`, and can take some actions on the training loop via
:class:`~transformers.TrainerControl`.
Available Callbacks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is the list of the available :class:`~transformers.TrainerCallback` in the library:
.. autoclass:: transformers.integrations.CometCallback
:members: setup
.. autoclass:: transformers.DefaultFlowCallback
.. autoclass:: transformers.PrinterCallback
.. autoclass:: transformers.ProgressCallback
.. autoclass:: transformers.integrations.TensorBoardCallback
.. autoclass:: transformers.integrations.WandbCallback
:members: setup
TrainerCallback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TrainerCallback
:members:
TrainerState
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TrainerState
:members:
TrainerControl
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TrainerControl
:members: