transformers/run_classifier_pytorch.py
2018-11-01 02:10:46 -04:00

446 lines
18 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
# import modeling_pytorch
# import optimization
import tokenization_pytorch
import torch
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
import argparse
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default = None,
type = str,
required = True,
help = "The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
default = None,
type = str,
required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--task_name",
default = None,
type = str,
required = True,
help = "The name of the task to train.")
parser.add_argument("--vocab_file",
default = None,
type = str,
required = True,
help = "The vocabulary file that the BERT model was trained on.")
parser.add_argument("--output_dir",
default = None,
type = str,
required = True,
help = "The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--init_checkpoint",
default = None,
type = str,
help = "Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
default = True,
type = bool,
help = "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
parser.add_argument("--max_seq_length",
default = 128,
type = int,
help = "The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default = False,
type = bool,
help = "Whether to run training.")
parser.add_argument("--do_eval",
default = False,
type = bool,
help = "Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size",
default = 32,
type = int,
help = "Total batch size for training.")
parser.add_argument("--eval_batch_size",
default = 8,
type = int,
help = "Total batch size for eval.")
parser.add_argument("--learning_rate",
default = 5e-5,
type = float,
help = "The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default = 3.0,
type = float,
help = "Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default = 0.1,
type = float,
help = "Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
default = 1000,
type = int,
help = "How often to save the model checkpoint.")
parser.add_argument("--iterations_per_loop",
default = 1000,
type = int,
help = "How many steps to make in each estimator call.")
### BEGIN - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ###
parser.add_argument("--use_tpu",
default = False,
type = bool,
help = "Whether to use TPU or GPU/CPU.")
parser.add_argument("--tpu_name",
default = None,
type = str,
help = "The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
parser.add_argument("--tpu_zone",
default = None,
type = str,
help = "[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
parser.add_argument("--gcp_project",
default = None,
type = str,
help = "[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
parser.add_argument("--master",
default = None,
type = str,
help = "[Optional] TensorFlow master URL.")
parser.add_argument("--num_tpu_cores",
default = 8,
type = int,
help = "Only used if `use_tpu` is True. Total number of TPU cores to use.")
### END - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ###
args = parser.parse_args()
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
"dev_matched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
text_a = tokenization_pytorch.convert_to_unicode(line[8])
text_b = tokenization_pytorch.convert_to_unicode(line[9])
label = tokenization_pytorch.convert_to_unicode(line[-1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = tokenization_pytorch.convert_to_unicode(line[3])
label = tokenization_pytorch.convert_to_unicode(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[tokenization_pytorch.printable_text(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
raise NotImplementedError()
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps,
use_one_hot_embeddings):
raise NotImplementedError()
### ATTENTION - I removed the `use_tpu` argument
def input_fn_builder(features, seq_length, is_training, drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
torch.Tensor(all_input_ids, size=[num_examples, seq_length],
dtype=torch.int32, requires_grad=False),
"input_mask":
torch.Tensor(all_input_mask, size=[num_examples, seq_length],
dtype=torch.int32, requires_grad=False),
"segment_ids":
torch.Tensor(all_segment_ids, size=[num_examples, seq_length],
dtype=torch.int32, requires_grad=False),
"label_ids":
torch.Tensor(all_label_ids, size=[num_examples],
dtype=torch.int32, requires_grad=False)
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn