mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
127 lines
5.4 KiB
Python
127 lines
5.4 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers.testing_utils import is_torch_available, require_torch
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import AutoConfig
|
|
from transformers.masking_utils import create_causal_mask
|
|
|
|
|
|
# fmt: off
|
|
EXPECTED_PACKED_MASK = torch.tensor([[[
|
|
[ True, False, False, False, False, False, False, False, False, False],
|
|
[ True, True, False, False, False, False, False, False, False, False],
|
|
[ True, True, True, False, False, False, False, False, False, False],
|
|
[ True, True, True, True, False, False, False, False, False, False],
|
|
[False, False, False, False, True, False, False, False, False, False],
|
|
[False, False, False, False, True, True, False, False, False, False],
|
|
[False, False, False, False, False, False, True, False, False, False],
|
|
[False, False, False, False, False, False, True, True, False, False],
|
|
[False, False, False, False, False, False, True, True, True, False],
|
|
[False, False, False, False, False, False, True, True, True, True]]],
|
|
|
|
|
|
[[[ True, False, False, False, False, False, False, False, False, False],
|
|
[ True, True, False, False, False, False, False, False, False, False],
|
|
[ True, True, True, False, False, False, False, False, False, False],
|
|
[ True, True, True, True, False, False, False, False, False, False],
|
|
[ True, True, True, True, True, False, False, False, False, False],
|
|
[ True, True, True, True, True, True, False, False, False, False],
|
|
[False, False, False, False, False, False, True, False, False, False],
|
|
[False, False, False, False, False, False, True, True, False, False],
|
|
[False, False, False, False, False, False, True, True, True, False],
|
|
[False, False, False, False, False, False, True, True, True, True]
|
|
]]], dtype=torch.bool)
|
|
# fmt: on
|
|
|
|
|
|
@require_torch
|
|
class MaskTest(unittest.TestCase):
|
|
def test_packed_sequence_mask_sdpa(self):
|
|
config = AutoConfig.from_pretrained("meta-llama/Llama-3.2-1B")
|
|
config._attn_implementation = "sdpa"
|
|
|
|
batch_size = 2
|
|
sequence_length = 10
|
|
cache_position = torch.arange(sequence_length)
|
|
|
|
# First batch has 3 packed sequences of 4, 2 and 4 tokens respectively, second has 2 of 6 and 4 tokens
|
|
position_ids = torch.tensor([[0, 1, 2, 3, 0, 1, 0, 1, 2, 3], [0, 1, 2, 3, 4, 5, 0, 1, 2, 3]])
|
|
|
|
causal_mask = create_causal_mask(
|
|
config=config,
|
|
# we only need batch size, seq_length and dtype here - we don't care about the values of the embeddings
|
|
input_embeds=torch.empty((batch_size, sequence_length), dtype=torch.float16),
|
|
attention_mask=None,
|
|
cache_position=cache_position,
|
|
past_key_values=None,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
self.assertEqual(causal_mask, EXPECTED_PACKED_MASK)
|
|
|
|
def test_packed_sequence_mask_eager(self):
|
|
config = AutoConfig.from_pretrained("meta-llama/Llama-3.2-1B")
|
|
config._attn_implementation = "eager"
|
|
|
|
batch_size = 2
|
|
sequence_length = 10
|
|
cache_position = torch.arange(sequence_length)
|
|
|
|
# First batch has 3 packed sequences of 4, 2 and 4 tokens respectively, second has 2 of 6 and 4 tokens
|
|
position_ids = torch.tensor([[0, 1, 2, 3, 0, 1, 0, 1, 2, 3], [0, 1, 2, 3, 4, 5, 0, 1, 2, 3]])
|
|
|
|
causal_mask = create_causal_mask(
|
|
config=config,
|
|
# we only need batch size, seq_length and dtype here - we don't care about the values of the embeddings
|
|
input_embeds=torch.empty((batch_size, sequence_length), dtype=torch.float16),
|
|
attention_mask=None,
|
|
cache_position=cache_position,
|
|
past_key_values=None,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
min_dtype = torch.finfo(torch.float16).min
|
|
self.assertEqual(causal_mask, torch.where(EXPECTED_PACKED_MASK, 0.0, min_dtype))
|
|
|
|
def test_packed_sequence_mask_flex_attention(self):
|
|
config = AutoConfig.from_pretrained("meta-llama/Llama-3.2-1B")
|
|
config._attn_implementation = "flex_attention"
|
|
|
|
batch_size = 2
|
|
sequence_length = 10
|
|
cache_position = torch.arange(sequence_length)
|
|
|
|
# First batch has 3 packed sequences of 4, 2 and 4 tokens respectively, second has 2 of 6 and 4 tokens
|
|
position_ids = torch.tensor([[0, 1, 2, 3, 0, 1, 0, 1, 2, 3], [0, 1, 2, 3, 4, 5, 0, 1, 2, 3]])
|
|
|
|
causal_mask = create_causal_mask(
|
|
config=config,
|
|
# we only need batch size, seq_length and dtype here - we don't care about the values of the embeddings
|
|
input_embeds=torch.empty((batch_size, sequence_length), dtype=torch.float16),
|
|
attention_mask=None,
|
|
cache_position=cache_position,
|
|
past_key_values=None,
|
|
position_ids=position_ids,
|
|
)
|
|
|
|
block_mask = causal_mask.to_dense()
|
|
self.assertEqual(block_mask, EXPECTED_PACKED_MASK)
|