mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* stash commit * Experiment 1: Try just Gemma * Experiment 1: Just try Gemma * make fixup * Trigger tests * stash commit * Try adding Gemma3 as well * make fixup * Correct attrib names * Correct pipeline model mapping * Add in all_model_classes for Gemma1 again * Move the pipeline model mapping around again * make fixup * Revert Gemma3 changes since it's a VLM * Let's try Falcon * Correct attributes * Correct attributes * Let's try just overriding get_config() for now * Do Nemotron too * And Llama! * Do llama/persimmon * Correctly skip tests * Fix Persimmon * Include Phimoe * Fix Gemma2 * Set model_tester_class correctly * Add GLM * More models! * models models models * make fixup * Add Qwen3 + Qwen3MoE * Correct import * make fixup * Add the QuestionAnswering classes * Add the QuestionAnswering classes * Move pipeline mapping to the right place * Jetmoe too * Stop RoPE testing models with no RoPE * Fix up JetMOE a bit * Fix up JetMOE a bit * Can we just force pad_token_id all the time? * make fixup * fix starcoder2 * Move pipeline mapping * Fix RoPE skipping * Fix RecurrentGemma tests * Fix Falcon tests * Add MoE attributes * Fix values for RoPE testing * Make sure we set bos_token_id and eos_token_id in an appropriate range * make fixup * Fix GLM4 * Add mamba attributes * Revert bits of JetMOE * Re-add the JetMOE skips * Update tests/causal_lm_tester.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add licence --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
278 lines
11 KiB
Python
278 lines
11 KiB
Python
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Qwen2MoE model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer, Qwen2MoeConfig, is_torch_available, set_seed
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Qwen2MoeForCausalLM,
|
|
Qwen2MoeForQuestionAnswering,
|
|
Qwen2MoeForSequenceClassification,
|
|
Qwen2MoeForTokenClassification,
|
|
Qwen2MoeModel,
|
|
)
|
|
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
class Qwen2MoeModelTester(CausalLMModelTester):
|
|
config_class = Qwen2MoeConfig
|
|
if is_torch_available():
|
|
base_model_class = Qwen2MoeModel
|
|
causal_lm_class = Qwen2MoeForCausalLM
|
|
sequence_class = Qwen2MoeForSequenceClassification
|
|
token_class = Qwen2MoeForTokenClassification
|
|
question_answering_class = Qwen2MoeForQuestionAnswering
|
|
|
|
|
|
@require_torch
|
|
class Qwen2MoeModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
Qwen2MoeModel,
|
|
Qwen2MoeForCausalLM,
|
|
Qwen2MoeForSequenceClassification,
|
|
Qwen2MoeForTokenClassification,
|
|
Qwen2MoeForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Qwen2MoeModel,
|
|
"text-classification": Qwen2MoeForSequenceClassification,
|
|
"token-classification": Qwen2MoeForTokenClassification,
|
|
"text-generation": Qwen2MoeForCausalLM,
|
|
"question-answering": Qwen2MoeForQuestionAnswering,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
model_tester_class = Qwen2MoeModelTester
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="Qwen2Moe flash attention does not support right padding")
|
|
|
|
# Ignore copy
|
|
def test_load_balancing_loss(self):
|
|
r"""
|
|
Let's make sure we can actually compute the loss and do a backward on it.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.num_experts = 8
|
|
config.expert_interval = 2
|
|
config.output_router_logits = True
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
model = Qwen2MoeForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask)
|
|
self.assertEqual(result.router_logits[0].shape, (91, config.num_experts))
|
|
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
|
|
|
|
# First, we make sure that adding padding tokens doesn't change the loss
|
|
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
|
|
pad_length = 1000
|
|
# Add padding tokens (assume that pad_token_id=1) to input_ids
|
|
padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
|
|
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
|
|
padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
|
|
|
|
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
|
|
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
|
|
|
|
# We make sure that the loss of including padding tokens != the loss without padding tokens
|
|
# if attention_mask=None --> we don't exclude padding tokens
|
|
include_padding_result = model(padded_input_ids, attention_mask=None)
|
|
|
|
# This is to mimic torch.testing.assert_not_close
|
|
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
|
|
|
|
|
|
@require_torch
|
|
class Qwen2MoeIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_a2_7b_logits(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
model = Qwen2MoeForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", device_map="auto")
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
with torch.no_grad():
|
|
out = model(input_ids).logits.float().cpu()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor([[-4.2125, -3.6416, -4.9136, -4.3005, -4.9938, -3.4393, -3.5195, -4.1621]])
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([2.3013, -0.6595, -0.1389, -1.4095, -1.7381, -1.7609, -2.0449, -2.4289, -3.0271, -2.1351, -0.6568, -4.6012, -1.9102, -0.7475, -3.1377, 4.6904, 7.1936, 7.0991, 6.4414, 6.1720, 6.2617, 5.8751, 5.6997, 5.6011, 5.5828, -3.9505, -0.5384, -0.3392, 1.2445, 2.0714]) # fmt: skip
|
|
print(out[0, 0, :30])
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@slow
|
|
def test_model_a2_7b_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = """To be or not to be, that is the question. This is the question that has been asked by many people over the"""
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False)
|
|
model = Qwen2MoeForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", device_map="auto")
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@require_bitsandbytes
|
|
@slow
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_a2_7b_long_prompt(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = Qwen2MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen1.5-MoE-A2.7B",
|
|
device_map="auto",
|
|
load_in_4bit=True,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
# Assisted generation
|
|
assistant_model = model
|
|
assistant_model.generation_config.num_assistant_tokens = 2
|
|
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
del assistant_model
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@slow
|
|
@require_torch_sdpa
|
|
def test_model_a2_7b_long_prompt_sdpa(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = Qwen2MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen1.5-MoE-A2.7B",
|
|
device_map="auto",
|
|
attn_implementation="sdpa",
|
|
)
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
# Assisted generation
|
|
assistant_model = model
|
|
assistant_model.generation_config.num_assistant_tokens = 2
|
|
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
|
|
generated_ids = assistant_model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
del assistant_model
|
|
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
EXPECTED_TEXT_COMPLETION = """To be or not to be, that is the question. This is the question that has been asked by many people over the"""
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False)
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
def test_speculative_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"To be or not to be, that is the question.\nThe answer is to be, of course. But what does it"
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False)
|
|
model = Qwen2MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
assistant_model = Qwen2MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
set_seed(0)
|
|
generated_ids = model.generate(
|
|
input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=assistant_model
|
|
)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|