mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* stash commit * Experiment 1: Try just Gemma * Experiment 1: Just try Gemma * make fixup * Trigger tests * stash commit * Try adding Gemma3 as well * make fixup * Correct attrib names * Correct pipeline model mapping * Add in all_model_classes for Gemma1 again * Move the pipeline model mapping around again * make fixup * Revert Gemma3 changes since it's a VLM * Let's try Falcon * Correct attributes * Correct attributes * Let's try just overriding get_config() for now * Do Nemotron too * And Llama! * Do llama/persimmon * Correctly skip tests * Fix Persimmon * Include Phimoe * Fix Gemma2 * Set model_tester_class correctly * Add GLM * More models! * models models models * make fixup * Add Qwen3 + Qwen3MoE * Correct import * make fixup * Add the QuestionAnswering classes * Add the QuestionAnswering classes * Move pipeline mapping to the right place * Jetmoe too * Stop RoPE testing models with no RoPE * Fix up JetMOE a bit * Fix up JetMOE a bit * Can we just force pad_token_id all the time? * make fixup * fix starcoder2 * Move pipeline mapping * Fix RoPE skipping * Fix RecurrentGemma tests * Fix Falcon tests * Add MoE attributes * Fix values for RoPE testing * Make sure we set bos_token_id and eos_token_id in an appropriate range * make fixup * Fix GLM4 * Add mamba attributes * Revert bits of JetMOE * Re-add the JetMOE skips * Update tests/causal_lm_tester.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add licence --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
194 lines
7.8 KiB
Python
194 lines
7.8 KiB
Python
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Testing suite for the PyTorch PhiMoE model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import PhimoeConfig, StaticCache, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
PhimoeForCausalLM,
|
|
PhimoeForSequenceClassification,
|
|
PhimoeModel,
|
|
)
|
|
|
|
end_of_text_token = 32000
|
|
|
|
class PhimoeMiniWithStaticCache(torch.nn.Module):
|
|
def __init__(self, model: PhimoeForCausalLM, batch_size: int, max_seq_len: int):
|
|
super().__init__()
|
|
self.model = model
|
|
self.cache = StaticCache(
|
|
config=model.config,
|
|
max_batch_size=batch_size,
|
|
max_cache_len=max_seq_len,
|
|
device=self.model.device,
|
|
dtype=self.model.dtype,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
) -> torch.FloatTensor:
|
|
return self.model.forward(
|
|
input_ids=input_ids,
|
|
use_cache=True,
|
|
return_dict=True,
|
|
past_key_values=self.cache,
|
|
).logits
|
|
|
|
@staticmethod
|
|
def generate(model: PhimoeForCausalLM, prompt_tokens: torch.LongTensor, max_seq_len: int) -> list[int]:
|
|
model = PhimoeMiniWithStaticCache(model, 1, max_seq_len + prompt_tokens.shape[-1])
|
|
|
|
response_tokens = []
|
|
|
|
for input_pos in range(prompt_tokens.shape[-1]):
|
|
result = model.forward(
|
|
input_ids=prompt_tokens[:, input_pos : input_pos + 1],
|
|
)
|
|
response_tokens.append(prompt_tokens[0][input_pos].item())
|
|
|
|
current_token = torch.argmax(result[:, -1, :], dim=-1).item()
|
|
response_tokens.append(current_token)
|
|
|
|
while current_token != end_of_text_token and len(response_tokens) < max_seq_len:
|
|
result = model.forward(
|
|
input_ids=torch.tensor([[current_token]], dtype=torch.long),
|
|
)
|
|
current_token = torch.argmax(result[:, -1, :], dim=-1).item()
|
|
response_tokens.append(current_token)
|
|
|
|
return response_tokens
|
|
|
|
|
|
class PhimoeModelTester(CausalLMModelTester):
|
|
if is_torch_available():
|
|
config_class = PhimoeConfig
|
|
base_model_class = PhimoeModel
|
|
causal_lm_class = PhimoeForCausalLM
|
|
sequence_class = PhimoeForSequenceClassification
|
|
|
|
|
|
@require_torch
|
|
class PhimoeModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(PhimoeModel, PhimoeForCausalLM, PhimoeForSequenceClassification) if is_torch_available() else ()
|
|
)
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
model_tester_class = PhimoeModelTester
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": PhimoeModel,
|
|
"text-classification": PhimoeForSequenceClassification,
|
|
"text-generation": PhimoeForCausalLM,
|
|
"zero-shot": PhimoeForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79292/workflows/fa2ba644-8953-44a6-8f67-ccd69ca6a476/jobs/1012905
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
return True
|
|
|
|
|
|
@slow
|
|
@require_torch
|
|
class PhimoeIntegrationTest(unittest.TestCase):
|
|
def test_model_phimoe_instruct_logits(self):
|
|
input_ids = {
|
|
"input_ids": torch.tensor(
|
|
[[1212, 318, 281, 1672, 2643, 290, 428, 318, 257, 1332]], dtype=torch.long, device=torch_device
|
|
)
|
|
}
|
|
|
|
model = PhimoeForCausalLM.from_pretrained("microsoft/Phi-3.5-MoE-instruct").to(torch_device)
|
|
model.eval()
|
|
|
|
output = model(**input_ids).logits
|
|
|
|
EXPECTED_OUTPUT = torch.tensor([[-3.5312, -2.5000, -1.2734, 0.3555, -0.7578, -0.4727, 0.5977, -0.4316,
|
|
0.2256, -1.2188, -1.6797, 0.9961, 3.7656, 11.3125, -1.3828, -4.8438,
|
|
-5.7500, -1.9375, 0.7227, -0.3438, -0.2100, -0.4277, -0.0444, -0.5352,
|
|
-0.6406, -0.1016, -0.4258, -1.0234, 0.4297, -0.6250],
|
|
[-0.9883, 0.1455, -0.4902, 2.3594, 0.7031, 3.1406, 0.4375, 0.2559,
|
|
0.6172, -2.1094, -1.3359, 2.5938, 4.9062, 10.8125, -0.1094, 1.5781,
|
|
-4.9375, 0.7148, -0.0972, 1.7656, -0.0801, 0.2217, 0.1875, -0.4629,
|
|
1.5781, 0.3535, 0.0874, 0.6836, -0.0518, -1.2969]]).to(torch_device) # fmt: skip
|
|
|
|
torch.testing.assert_close(EXPECTED_OUTPUT, output[0, :2, :30], rtol=1e-4, atol=1e-4)
|
|
|
|
def test_phimoe_instruct_generation(self):
|
|
model = PhimoeForCausalLM.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user.",
|
|
},
|
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
|
]
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
|
|
|
outputs = model.generate(inputs, max_new_tokens=32)
|
|
output_text = tokenizer.batch_decode(outputs)
|
|
|
|
EXPECTED_OUTPUT = [
|
|
"<|system|> You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user.<|end|><|user|> Can you provide ways to eat combinations of bananas and dragonfruits?<|end|><|assistant|> Certainly! Bananas and dragonfruits are both delicious and nutritious fruits that can be combined in various ways to create tast"
|
|
]
|
|
|
|
self.assertListEqual(output_text, EXPECTED_OUTPUT)
|
|
|
|
def test_phimoe_instruct_with_static_cache(self):
|
|
model = PhimoeForCausalLM.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user.",
|
|
},
|
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
|
]
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
|
|
|
response_tokens = PhimoeMiniWithStaticCache.generate(model, inputs, 64)
|
|
|
|
output_text = tokenizer.batch_decode(torch.tensor([response_tokens], dtype=torch.long, device=torch_device))
|
|
|
|
EXPECTED_OUTPUT = [
|
|
"<|system|> You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user.<|end|><|user|> Can you provide ways to eat combinations of bananas and dragonfruits?<|end|><|assistant|> Certainly! Bananas and dragonfruits are both delicious and nutritious fruits that can"
|
|
]
|
|
|
|
self.assertListEqual(output_text, EXPECTED_OUTPUT)
|