mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* stash commit * Experiment 1: Try just Gemma * Experiment 1: Just try Gemma * make fixup * Trigger tests * stash commit * Try adding Gemma3 as well * make fixup * Correct attrib names * Correct pipeline model mapping * Add in all_model_classes for Gemma1 again * Move the pipeline model mapping around again * make fixup * Revert Gemma3 changes since it's a VLM * Let's try Falcon * Correct attributes * Correct attributes * Let's try just overriding get_config() for now * Do Nemotron too * And Llama! * Do llama/persimmon * Correctly skip tests * Fix Persimmon * Include Phimoe * Fix Gemma2 * Set model_tester_class correctly * Add GLM * More models! * models models models * make fixup * Add Qwen3 + Qwen3MoE * Correct import * make fixup * Add the QuestionAnswering classes * Add the QuestionAnswering classes * Move pipeline mapping to the right place * Jetmoe too * Stop RoPE testing models with no RoPE * Fix up JetMOE a bit * Fix up JetMOE a bit * Can we just force pad_token_id all the time? * make fixup * fix starcoder2 * Move pipeline mapping * Fix RoPE skipping * Fix RecurrentGemma tests * Fix Falcon tests * Add MoE attributes * Fix values for RoPE testing * Make sure we set bos_token_id and eos_token_id in an appropriate range * make fixup * Fix GLM4 * Add mamba attributes * Revert bits of JetMOE * Re-add the JetMOE skips * Update tests/causal_lm_tester.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add licence --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
130 lines
5.0 KiB
Python
130 lines
5.0 KiB
Python
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Persimmon model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from transformers import PersimmonConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_fp16,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
PersimmonForCausalLM,
|
|
PersimmonForSequenceClassification,
|
|
PersimmonForTokenClassification,
|
|
PersimmonModel,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
class PersimmonModelTester(CausalLMModelTester):
|
|
if is_torch_available():
|
|
config_class = PersimmonConfig
|
|
base_model_class = PersimmonModel
|
|
causal_lm_class = PersimmonForCausalLM
|
|
sequence_class = PersimmonForSequenceClassification
|
|
token_class = PersimmonForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class PersimmonModelTest(CausalLMModelTest, unittest.TestCase):
|
|
model_tester_class = PersimmonModelTester
|
|
all_model_classes = (
|
|
(PersimmonModel, PersimmonForCausalLM, PersimmonForSequenceClassification, PersimmonForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": PersimmonModel,
|
|
"text-classification": PersimmonForSequenceClassification,
|
|
"token-classification": PersimmonForTokenClassification,
|
|
# TODO (ydshieh): check why these two fail. Fix them or skip them in a better way.
|
|
# "text-generation": PersimmonForCausalLM,
|
|
# "zero-shot": PersimmonForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
model_tester_class = PersimmonModelTester
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
|
|
|
|
@require_torch
|
|
class PersimmonIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_bitsandbytes
|
|
def test_model_8b_chat_logits(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
model = PersimmonForCausalLM.from_pretrained(
|
|
"adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
|
|
)
|
|
out = model(torch.tensor([input_ids], device=torch_device)).logits.float()
|
|
|
|
EXPECTED_MEAN = torch.tensor(
|
|
[[-11.4726, -11.1495, -11.2694, -11.2223, -10.9452, -11.0663, -11.0031, -11.1028]]
|
|
)
|
|
# change dtype to `torch.float32` before calling `mean` to avoid `nan` values
|
|
torch.testing.assert_close(out.cpu().to(torch.float32).mean(-1), EXPECTED_MEAN, rtol=1e-4, atol=1e-4)
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor(
|
|
[-16.9062, -16.9062, -16.9062, -16.9062, -16.8906, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9062, -16.9531, -16.9062, -16.9531, -16.9062, -16.9062],
|
|
dtype=torch.float16
|
|
)
|
|
# fmt: on
|
|
torch.testing.assert_close(out.cpu()[0, 0, :30], EXPECTED_SLICE, rtol=1e-5, atol=1e-5)
|
|
|
|
backend_empty_cache(torch_device)
|
|
del model
|
|
gc.collect()
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_torch_fp16
|
|
@require_bitsandbytes
|
|
def test_model_8b_chat_greedy_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = """human: Simply put, the theory of relativity states that?\n\nadept: The theory of relativity states that the laws of physics are the same for all observers, regardless of their relative motion."""
|
|
prompt = "human: Simply put, the theory of relativity states that?\n\nadept:"
|
|
tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-chat", use_fast=False)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(torch_device)
|
|
model = PersimmonForCausalLM.from_pretrained(
|
|
"adept/persimmon-8b-chat", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
|
|
)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=64)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
backend_empty_cache(torch_device)
|
|
del model
|
|
gc.collect()
|