mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* stash commit * Experiment 1: Try just Gemma * Experiment 1: Just try Gemma * make fixup * Trigger tests * stash commit * Try adding Gemma3 as well * make fixup * Correct attrib names * Correct pipeline model mapping * Add in all_model_classes for Gemma1 again * Move the pipeline model mapping around again * make fixup * Revert Gemma3 changes since it's a VLM * Let's try Falcon * Correct attributes * Correct attributes * Let's try just overriding get_config() for now * Do Nemotron too * And Llama! * Do llama/persimmon * Correctly skip tests * Fix Persimmon * Include Phimoe * Fix Gemma2 * Set model_tester_class correctly * Add GLM * More models! * models models models * make fixup * Add Qwen3 + Qwen3MoE * Correct import * make fixup * Add the QuestionAnswering classes * Add the QuestionAnswering classes * Move pipeline mapping to the right place * Jetmoe too * Stop RoPE testing models with no RoPE * Fix up JetMOE a bit * Fix up JetMOE a bit * Can we just force pad_token_id all the time? * make fixup * fix starcoder2 * Move pipeline mapping * Fix RoPE skipping * Fix RecurrentGemma tests * Fix Falcon tests * Add MoE attributes * Fix values for RoPE testing * Make sure we set bos_token_id and eos_token_id in an appropriate range * make fixup * Fix GLM4 * Add mamba attributes * Revert bits of JetMOE * Re-add the JetMOE skips * Update tests/causal_lm_tester.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add licence --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
200 lines
7.5 KiB
Python
200 lines
7.5 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Glm model."""
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GlmConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_large_accelerator,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
GlmForCausalLM,
|
|
GlmForSequenceClassification,
|
|
GlmForTokenClassification,
|
|
GlmModel,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class GlmModelTester(CausalLMModelTester):
|
|
config_class = GlmConfig
|
|
if is_torch_available():
|
|
base_model_class = GlmModel
|
|
causal_lm_class = GlmForCausalLM
|
|
sequence_class = GlmForSequenceClassification
|
|
token_class = GlmForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class GlmModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(GlmModel, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": GlmModel,
|
|
"text-classification": GlmForSequenceClassification,
|
|
"token-classification": GlmForTokenClassification,
|
|
"text-generation": GlmForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
model_tester_class = GlmModelTester
|
|
|
|
|
|
@slow
|
|
@require_torch_large_accelerator
|
|
class GlmIntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
model_id = "THUDM/glm-4-9b"
|
|
revision = "refs/pr/15"
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def test_model_9b_fp16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_bf16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_eager(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="eager",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_torch_sdpa
|
|
def test_model_9b_sdpa(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="sdpa",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_9b_flash_attn(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="flash_attention_2",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|