mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* stash commit * Experiment 1: Try just Gemma * Experiment 1: Just try Gemma * make fixup * Trigger tests * stash commit * Try adding Gemma3 as well * make fixup * Correct attrib names * Correct pipeline model mapping * Add in all_model_classes for Gemma1 again * Move the pipeline model mapping around again * make fixup * Revert Gemma3 changes since it's a VLM * Let's try Falcon * Correct attributes * Correct attributes * Let's try just overriding get_config() for now * Do Nemotron too * And Llama! * Do llama/persimmon * Correctly skip tests * Fix Persimmon * Include Phimoe * Fix Gemma2 * Set model_tester_class correctly * Add GLM * More models! * models models models * make fixup * Add Qwen3 + Qwen3MoE * Correct import * make fixup * Add the QuestionAnswering classes * Add the QuestionAnswering classes * Move pipeline mapping to the right place * Jetmoe too * Stop RoPE testing models with no RoPE * Fix up JetMOE a bit * Fix up JetMOE a bit * Can we just force pad_token_id all the time? * make fixup * fix starcoder2 * Move pipeline mapping * Fix RoPE skipping * Fix RecurrentGemma tests * Fix Falcon tests * Add MoE attributes * Fix values for RoPE testing * Make sure we set bos_token_id and eos_token_id in an appropriate range * make fixup * Fix GLM4 * Add mamba attributes * Revert bits of JetMOE * Re-add the JetMOE skips * Update tests/causal_lm_tester.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add licence --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
493 lines
21 KiB
Python
493 lines
21 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Gemma model."""
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
from packaging import version
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available
|
|
from transformers.generation.configuration_utils import GenerationConfig
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
GemmaForCausalLM,
|
|
GemmaForSequenceClassification,
|
|
GemmaForTokenClassification,
|
|
GemmaModel,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class GemmaModelTester(CausalLMModelTester):
|
|
config_class = GemmaConfig
|
|
if is_torch_available():
|
|
base_model_class = GemmaModel
|
|
causal_lm_class = GemmaForCausalLM
|
|
sequence_classification_class = GemmaForSequenceClassification
|
|
token_classification_class = GemmaForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class GemmaModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": GemmaModel,
|
|
"text-classification": GemmaForSequenceClassification,
|
|
"token-classification": GemmaForTokenClassification,
|
|
"text-generation": GemmaForCausalLM,
|
|
"zero-shot": GemmaForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
model_tester_class = GemmaModelTester
|
|
|
|
# used in `test_torch_compile_for_training`
|
|
_torch_compile_train_cls = GemmaForCausalLM if is_torch_available() else None
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="Gemma flash attention does not support right padding")
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class GemmaIntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def tearDown(self):
|
|
# See LlamaIntegrationTest.tearDown(). Can be removed once LlamaIntegrationTest.tearDown() is removed.
|
|
cleanup(torch_device, gc_collect=False)
|
|
|
|
@require_read_token
|
|
def test_model_2b_fp16(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
model.generation_config.cache_implementation = "static"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_2b_bf16(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_2b_eager(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_torch_sdpa
|
|
@require_read_token
|
|
def test_model_2b_sdpa(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_flash_attn
|
|
@require_read_token
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_2b_flash_attn(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_2b_4bit(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project and I need to make a 3d model of a house. I have been using",
|
|
"Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@unittest.skip(reason="The test will not fit our CI runners")
|
|
@require_read_token
|
|
def test_model_7b_fp32(self):
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will",
|
|
"Hi,\n\nI have a problem with my 2005 1.6 16",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_7b_fp16(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_7b_bf16(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
|
|
# Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4.
|
|
#
|
|
# Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s,
|
|
# considering differences in hardware processing and potential deviations in generated text.
|
|
EXPECTED_TEXTS = {
|
|
7: [
|
|
"""Hello I am doing a project on a 1991 240sx and I am trying to find""",
|
|
"Hi today I am going to show you how to make a very simple and easy to make a very simple and",
|
|
],
|
|
8: [
|
|
"Hello I am doing a project for my school and I am trying to make a program that will read a .txt file",
|
|
"Hi today I am going to show you how to make a very simple and easy to make a very simple and",
|
|
],
|
|
9: [
|
|
"Hello I am doing a project for my school and I am trying to get a servo to move a certain amount of degrees",
|
|
"Hi today I am going to show you how to make a very simple and easy to make DIY light up sign",
|
|
],
|
|
}
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
|
|
|
|
@require_read_token
|
|
def test_model_7b_fp16_static_cache(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
model.generation_config.cache_implementation = "static"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_7b_4bit(self):
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project for my school and I am trying to make a program that will take a number and then",
|
|
"Hi today I am going to talk about the best way to get rid of acne. miniaturing is a very",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_read_token
|
|
def test_compile_static_cache(self):
|
|
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
|
|
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
|
|
if version.parse(torch.__version__) < version.parse("2.3.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
NUM_TOKENS_TO_GENERATE = 40
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music was in the 1990s. I have looked on the internet and I have found",
|
|
"Hi today\nI have a problem with my 2007 1.9 tdi 105bhp.\nI have a problem with the engine management light on.\nI have checked the",
|
|
]
|
|
|
|
prompts = ["Hello I am doing", "Hi today"]
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", pad_token="</s>", padding_side="right")
|
|
model = GemmaForCausalLM.from_pretrained("google/gemma-2b", device_map=torch_device, torch_dtype=torch.float16)
|
|
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
|
|
# Dynamic Cache
|
|
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
|
|
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text) # Both GPU architectures have the same output
|
|
|
|
# Static Cache
|
|
generated_ids = model.generate(
|
|
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
|
)
|
|
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
|
|
|
|
# Static Cache + compile
|
|
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
|
generated_ids = model.generate(
|
|
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
|
)
|
|
static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_export_static_cache(self):
|
|
if version.parse(torch.__version__) < version.parse("2.3.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
from transformers.integrations.executorch import (
|
|
TorchExportableModuleWithStaticCache,
|
|
convert_and_export_with_cache,
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", pad_token="</s>", padding_side="right")
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music was in the 1990s. I have looked on the internet and I have found",
|
|
]
|
|
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
|
|
"input_ids"
|
|
].shape[-1]
|
|
|
|
# Load model
|
|
device = "cpu"
|
|
dtype = torch.bfloat16
|
|
cache_implementation = "static"
|
|
attn_implementation = "sdpa"
|
|
batch_size = 1
|
|
model = GemmaForCausalLM.from_pretrained(
|
|
"google/gemma-2b",
|
|
device_map=device,
|
|
torch_dtype=dtype,
|
|
attn_implementation=attn_implementation,
|
|
generation_config=GenerationConfig(
|
|
use_cache=True,
|
|
cache_implementation=cache_implementation,
|
|
max_length=max_generation_length,
|
|
cache_config={
|
|
"batch_size": batch_size,
|
|
"max_cache_len": max_generation_length,
|
|
},
|
|
),
|
|
)
|
|
|
|
prompts = ["Hello I am doing"]
|
|
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
prompt_token_ids = prompt_tokens["input_ids"]
|
|
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
|
|
|
|
# Static Cache + eager
|
|
eager_generated_ids = model.generate(
|
|
**prompt_tokens, max_new_tokens=max_new_tokens, do_sample=False, cache_implementation=cache_implementation
|
|
)
|
|
eager_generated_text = tokenizer.batch_decode(eager_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, eager_generated_text)
|
|
|
|
# Static Cache + export
|
|
exported_program = convert_and_export_with_cache(model)
|
|
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
|
|
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
|
|
)
|
|
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
|
|
|
|
def test_model_2b_bf16_dola(self):
|
|
model_id = "google/gemma-2b"
|
|
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing an experiment and need to get the mass of a block. The problem is, it has no scale",
|
|
"Hi today we have the review for a <strong>2016/2017</strong> season of",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(
|
|
**inputs, max_new_tokens=20, do_sample=False, dola_layers="low", repetition_penalty=1.2
|
|
)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|