transformers/tests/models/hiera/test_modeling_hiera.py
Arthur f5d45d89c4
🚨Early-error🚨 config will error out if output_attentions=True and the attn implementation is wrong (#38288)
* Protect ParallelInterface

* early error out on output attention setting for no wraning in modeling

* modular update

* fixup

* update model tests

* update

* oups

* set model's config

* more cases

* ??

* properly fix

* fixup

* update

* last onces

* update

* fix?

* fix wrong merge commit

* fix hub test

* nits

* wow I am tired

* updates

* fix pipeline!

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-05-23 17:17:38 +02:00

632 lines
26 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Hiera model."""
import math
import unittest
from transformers import HieraConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import (
cached_property,
is_torch_available,
is_vision_available,
)
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import HieraBackbone, HieraForImageClassification, HieraForPreTraining, HieraModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class HieraModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=[64, 64],
mlp_ratio=1.0,
num_channels=3,
depths=[1, 1, 1, 1],
patch_stride=[4, 4],
patch_size=[7, 7],
patch_padding=[3, 3],
masked_unit_size=[8, 8],
num_heads=[1, 1, 1, 1],
embed_dim_multiplier=2.0,
is_training=True,
use_labels=True,
embed_dim=8,
hidden_act="gelu",
decoder_hidden_size=2,
decoder_depth=1,
decoder_num_heads=1,
initializer_range=0.02,
scope=None,
type_sequence_label_size=10,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.mlp_ratio = mlp_ratio
self.num_channels = num_channels
self.depths = depths
self.patch_stride = patch_stride
self.patch_size = patch_size
self.patch_padding = patch_padding
self.masked_unit_size = masked_unit_size
self.num_heads = num_heads
self.embed_dim_multiplier = embed_dim_multiplier
self.is_training = is_training
self.use_labels = use_labels
self.embed_dim = embed_dim
self.hidden_act = hidden_act
self.decoder_hidden_size = decoder_hidden_size
self.decoder_depth = decoder_depth
self.decoder_num_heads = decoder_num_heads
self.initializer_range = initializer_range
self.scope = scope
self.type_sequence_label_size = type_sequence_label_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return HieraConfig(
embed_dim=self.embed_dim,
image_size=self.image_size,
patch_stride=self.patch_stride,
patch_size=self.patch_size,
patch_padding=self.patch_padding,
masked_unit_size=self.masked_unit_size,
mlp_ratio=self.mlp_ratio,
num_channels=self.num_channels,
depths=self.depths,
num_heads=self.num_heads,
embed_dim_multiplier=self.embed_dim_multiplier,
hidden_act=self.hidden_act,
decoder_hidden_size=self.decoder_hidden_size,
decoder_depth=self.decoder_depth,
decoder_num_heads=self.decoder_num_heads,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = HieraModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
tokens_spatial_shape = [i // s for i, s in zip(self.image_size, config.patch_stride)]
expected_seq_len = math.prod(tokens_spatial_shape) // math.prod(config.query_stride) ** (config.num_query_pool)
expected_dim = int(config.embed_dim * config.embed_dim_multiplier ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
def create_and_check_backbone(self, config, pixel_values, labels):
model = HieraBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
num_patches = config.image_size[0] // config.patch_stride[0] // config.masked_unit_size[0]
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], num_patches, num_patches]
)
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
# verify backbone works with out_features=None
config.out_features = None
model = HieraBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], num_patches, num_patches]
)
# verify channels
self.parent.assertEqual(len(model.channels), 1)
def create_and_check_for_pretraining(self, config, pixel_values, labels):
model = HieraForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
pred_stride = config.patch_stride[-1] * (config.query_stride[-1] ** config.num_query_pool)
num_patches = self.image_size[0] // pred_stride
self.parent.assertEqual(
result.logits.shape, (self.batch_size, num_patches**2, self.num_channels * pred_stride**2)
)
# test greyscale images
config.num_channels = 1
model = HieraForPreTraining(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size[0], self.image_size[0]])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches**2, pred_stride**2))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = HieraForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = HieraForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size[0], self.image_size[0]])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class HieraModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Hiera does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
HieraModel,
HieraBackbone,
HieraForImageClassification,
HieraForPreTraining,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"image-feature-extraction": HieraModel, "image-classification": HieraForImageClassification}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torch_exportable = True
def setUp(self):
self.model_tester = HieraModelTester(self)
self.config_tester = ConfigTester(self, config_class=HieraConfig, has_text_modality=False)
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
# Overriding as Hiera `get_input_embeddings` returns HieraPatchEmbeddings
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
# Overriding as attention shape depends on patch_stride and mask_unit_size
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class._from_config(config, attn_implementation="eager")
config = model.config
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = len(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
seq_len = math.prod([i // s for i, s in zip(config.image_size, config.patch_stride)])
mask_unit_area = math.prod(config.masked_unit_size)
num_windows = seq_len // mask_unit_area
if model_class.__name__ == "HieraForPreTraining":
num_windows = int(num_windows * (1 - config.mask_ratio))
seq_len = int(num_windows * mask_unit_area)
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# also another +1 for reshaped_hidden_states
added_hidden_states = 1 if model_class.__name__ == "HieraBackbone" else 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows],
)
# Overriding as attention shape depends on patch_stride and mask_unit_size
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class, image_size):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# Hiera has a different seq_length
patch_size = config.patch_stride
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
if model_class.__name__ == "HieraForPreTraining":
mask_unit_area = math.prod(config.masked_unit_size)
num_windows = num_patches // mask_unit_area
num_windows = int(num_windows * (1 - config.mask_ratio))
num_patches = int(num_windows * mask_unit_area)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
if not model_class.__name__ == "HieraBackbone":
reshaped_hidden_states = outputs.reshaped_hidden_states
self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
batch_size = reshaped_hidden_states[0].shape[0]
num_channels = reshaped_hidden_states[0].shape[-1]
reshaped_hidden_states = reshaped_hidden_states[0].view(batch_size, -1, num_channels)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
image_size = self.model_tester.image_size
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class, image_size)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class, image_size)
# Overriding since HieraForPreTraining outputs bool_masked_pos which has to be converted to float in the msg
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (list, tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object.float() - dict_object.float()))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
additional_kwargs = {}
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
additional_kwargs["output_hidden_states"] = True
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
if self.has_attentions:
# Removing "output_hidden_states"
del additional_kwargs["output_hidden_states"]
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
additional_kwargs["output_attentions"] = True
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
additional_kwargs["output_hidden_states"] = True
check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs)
@unittest.skip(reason="Hiera Transformer does not use feedforward chunking")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="Hiera does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ["facebook/hiera-tiny-224-hf"]:
model = HieraModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class HieraModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("facebook/hiera-tiny-224-in1k-hf") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = HieraForImageClassification.from_pretrained("facebook/hiera-tiny-224-in1k-hf").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
expected_pixel_values = torch.tensor(
[
[[0.2967, 0.4679, 0.4508], [0.3309, 0.4337, 0.3309], [0.3309, 0.3823, 0.3309]],
[[-1.5455, -1.4930, -1.5455], [-1.5280, -1.4755, -1.5980], [-1.5630, -1.5280, -1.4755]],
[[-0.6367, -0.4973, -0.5321], [-0.7936, -0.6715, -0.6715], [-0.8284, -0.7413, -0.5670]],
]
).to(torch_device)
torch.testing.assert_close(inputs.pixel_values[0, :3, :3, :3], expected_pixel_values, rtol=1e-4, atol=1e-4)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([[0.8028, 0.2409, -0.2254, -0.3712, -0.2848]]).to(torch_device)
torch.testing.assert_close(outputs.logits[0, :5], expected_slice, rtol=1e-4, atol=1e-4)
def test_inference_interpolate_pos_encoding(self):
model = HieraModel.from_pretrained("facebook/hiera-tiny-224-hf").to(torch_device)
image_processor = AutoImageProcessor.from_pretrained(
"facebook/hiera-tiny-224-hf", size={"shortest_edge": 448}, crop_size={"height": 448, "width": 448}
)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(pixel_values, interpolate_pos_encoding=True)
# verify the logits
expected_shape = torch.Size((1, 196, 768))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[1.7853, 0.0690, 0.3177], [2.6853, -0.2334, 0.0889], [1.5445, -0.1515, -0.0300]]
).to(torch_device)
torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@slow
def test_inference_for_pretraining(self):
# make random mask reproducible
torch.manual_seed(2)
model = HieraForPreTraining.from_pretrained("facebook/hiera-tiny-224-mae-hf").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
config = model.config
mask_spatial_shape = [
i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
]
num_windows = math.prod(mask_spatial_shape)
noise = torch.rand(1, num_windows).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs, noise=noise)
# verify the logits
expected_shape = torch.Size((1, 196, 768))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[1.6407, 1.6506, 1.6541, 1.6617, 1.6703],
[1.9730, 1.9842, 1.9848, 1.9896, 1.9947],
[1.5949, 1.8262, 1.2602, 1.4801, 1.4448],
[1.2341, 1.7907, 0.8618, 1.5202, 1.4523],
[2.0140, 1.9846, 1.9434, 1.9019, 1.8648],
]
)
torch.testing.assert_close(outputs.logits[0, :5, :5], expected_slice.to(torch_device), rtol=1e-4, atol=1e-4)
@require_torch
class HieraBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (HieraBackbone,) if is_torch_available() else ()
config_class = HieraConfig
def setUp(self):
self.model_tester = HieraModelTester(self)