transformers/tests/models/bamba/test_modeling_bamba.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

718 lines
30 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Bamba model."""
import inspect
import tempfile
import unittest
import pytest
from pytest import mark
from transformers import (
AutoTokenizer,
BambaConfig,
DataCollatorWithFlattening,
is_torch_available,
)
from transformers.testing_utils import (
Expectations,
get_device_properties,
require_deterministic_for_xpu,
require_flash_attn,
require_torch,
require_torch_accelerator,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BambaForCausalLM,
BambaModel,
)
from transformers.models.bamba.modeling_bamba import (
HybridMambaAttentionDynamicCache,
)
class BambaModelTester:
config_class = BambaConfig
if is_torch_available():
model_class = BambaModel
for_causal_lm_class = BambaForCausalLM
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=4,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=64,
hidden_act="silu",
attention_dropout=0.0,
attn_layer_indices=None,
attn_rotary_emb=8,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
num_labels=3,
pad_token_id=0,
mamba_n_groups=1,
mamba_n_heads=16,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
mamba_chunk_size=16,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
self.attn_layer_indices = attn_layer_indices
self.attn_rotary_emb = attn_rotary_emb
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.pad_token_id = pad_token_id
self.scope = scope
self.mamba_n_groups = mamba_n_groups
self.mamba_n_heads = mamba_n_heads
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_expand = mamba_expand
self.mamba_chunk_size = mamba_chunk_size
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
self._update_layer_configs()
config = self.get_config()
return config, input_ids, input_mask, token_labels
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
def _update_layer_configs(self):
"""Configures hidden layers and attn layer indices if they are not set."""
# Fix for SDPA tests, force at least 4 layers
if self.num_hidden_layers < 4:
self.num_hidden_layers = 4
if self.attn_layer_indices is None:
d = [x for x in range(2, self.num_hidden_layers) if self.num_hidden_layers % x == 0]
if len(d) == 0:
raise ValueError("num_hidden_layers is prime, cannot automatically set attn_layer_indices.")
d = d[-1] # get the largest divisor
self.attn_layer_indices = [x + 1 for x in range(0, self.num_hidden_layers, d)]
def get_config(self, **kwargs):
return self.config_class(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
attention_dropout=self.attention_dropout,
attn_layer_indices=self.attn_layer_indices,
attn_rotary_emb=self.attn_rotary_emb,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
mamba_n_groups=self.mamba_n_groups,
mamba_n_heads=self.mamba_n_heads,
mamba_d_state=self.mamba_d_state,
mamba_d_conv=self.mamba_d_conv,
mamba_expand=self.mamba_expand,
mamba_chunk_size=self.mamba_chunk_size,
**kwargs,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_labels,
):
model = self.model_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
token_labels,
):
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids, labels=token_labels)
result = model(input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
token_labels,
):
# config.is_decoder = True
# config.add_cross_attention = True
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
# first forward pass
# Attention: Jamba needs the cache to be initialized to return a cache!
past_key_values = HybridMambaAttentionDynamicCache(
config, input_ids.shape[0], model.dtype, device=model.device
)
outputs = model(
input_ids,
attention_mask=input_mask,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
cache_position=torch.arange(
input_ids.shape[1], input_ids.shape[1] + next_tokens.shape[1], device=model.device
),
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class BambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
model_tester_class = BambaModelTester
all_model_classes = (BambaModel, BambaForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": BambaModel,
"text-generation": BambaForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
# This is because we are hitting edge cases with the causal_mask buffer
model_split_percents = [0.5, 0.7, 0.8]
def setUp(self):
self.model_tester = self.model_tester_class(self)
self.config_tester = ConfigTester(self, config_class=self.model_tester.config_class, hidden_size=64)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_casual_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_initialization(self):
r"""
Overriding the test_initialization test as the A_log and D params of the Bamba mixer are initialized differently
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "A_log" in name:
A = torch.arange(1, config.mamba_n_heads + 1, dtype=torch.float32)
torch.testing.assert_close(param.data, torch.log(A), rtol=1e-5, atol=1e-5)
elif "D" in name:
D = torch.ones(config.mamba_n_heads, dtype=torch.float32)
torch.testing.assert_close(param.data, D, rtol=1e-5, atol=1e-5)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_mismatched_shapes_have_properly_initialized_weights(self):
r"""
Overriding the test_mismatched_shapes_have_properly_initialized_weights test because A_log and D params of the
Bamba mixer are initialized differently and we tested that in test_initialization
"""
self.skipTest(reason="Cumbersome and redundant for Bamba")
def test_attention_outputs(self):
r"""
Overriding the test_attention_outputs test as the Bamba model outputs attention only for its attention layers
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
expected_num_attentions = self.model_tester.num_hidden_layers - len(self.model_tester.attn_layer_indices)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class._from_config(config, attn_implementation="eager")
config = model.config
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_batching_equivalence(self):
# need to disable the tril input mask
orig = self.model_tester.use_input_mask
self.model_tester.use_input_mask = False
super().test_batching_equivalence()
self.model_tester.use_input_mask = orig
# essentially the same test in test_utils, just adjustment for rtol for this model
@pytest.mark.generate
def test_left_padding_compatibility(self):
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding
# - The model must have generative capabilities
if len(self.all_generative_model_classes) == 0:
self.skipTest(reason="No generative architecture available for this model.")
# - The model must support padding
if not self.has_attentions:
self.skipTest(reason="This model doesn't support padding.")
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _ = self.prepare_config_and_inputs_for_generate()
if config.is_encoder_decoder:
continue
else:
decoder_only_classes.append(model_class)
if len(decoder_only_classes) == 0:
self.skipTest(reason="No decoder-only architecture available for this model.")
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
# added support for it yet. We skip these models for now.
has_encoder_attributes = any(
attr_name
for attr_name in config.to_dict().keys()
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
)
if has_encoder_attributes:
self.skipTest(
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
)
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
# - for left padding we absolutely need to use an all ones
# attention mask, so we do not use the one in inputs_dict
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
# They should result in very similar logits
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
@unittest.skip(
"Bamba requires additionally specifying position_ids, seq_idx, and FlashAttentionKwargs for padding-free training."
)
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
pass
@unittest.skip(
"Bamba requires additionally specifying position_ids, seq_idx, and FlashAttentionKwargs for padding-free training."
)
def test_flash_attention_2_padding_matches_padding_free_with_position_ids_and_fa_kwargs(self):
pass
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attention_2_padding_matches_padding_free_with_position_ids_seq_idx_and_fa_kwargs(self):
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if 0 not in inputs_dict.get("attention_mask", []) or "attention_mask" not in inputs_dict:
self.skipTest("Model dummy inputs should contain padding in their attention mask")
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
if "position_ids" not in inspect.signature(model.forward).parameters:
self.skipTest("Model does not support position_ids")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# ensure left padding, to adapt for some models
if 0 in inputs_dict["attention_mask"][:, -1]:
inputs_dict["attention_mask"] = inputs_dict["attention_mask"].flip(1)
dummy_attention_mask = inputs_dict["attention_mask"]
inputs_dict["input_ids"][~dummy_attention_mask.bool()] = config.get_text_config().pad_token_id
model = (
model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
)
.to(torch_device)
.eval()
)
# flatten
features = [
{"input_ids": i[a.bool()].tolist()}
for i, a in zip(inputs_dict["input_ids"], inputs_dict["attention_mask"])
]
# add position_ids + fa_kwargs + seq_idx
data_collator = DataCollatorWithFlattening(
return_tensors="pt", return_seq_idx=True, return_flash_attn_kwargs=True
)
batch = data_collator(features)
batch_accelerator = {k: t.to(torch_device) if torch.is_tensor(t) else t for k, t in batch.items()}
res_padded = model(**inputs_dict)
res_padfree = model(**batch_accelerator)
logits_padded = res_padded.logits[inputs_dict["attention_mask"].bool()]
logits_padfree = res_padfree.logits[0]
torch.testing.assert_close(logits_padded.argmax(-1), logits_padfree.argmax(-1), rtol=0, atol=0)
# acceptable numerical instability
tol = torch.finfo(torch.float16).eps
torch.testing.assert_close(logits_padded, logits_padfree, rtol=tol, atol=tol)
@slow
@require_torch
@require_torch_accelerator
class BambaModelIntegrationTest(unittest.TestCase):
model = None
tokenizer = None
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
device_properties = None
@classmethod
def setUpClass(cls):
model_id = "ibm-fms/Bamba-9B"
cls.model = BambaForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
cls.tokenizer = AutoTokenizer.from_pretrained(model_id)
# feels a bit forced to have to do this for the generation test
cls.tokenizer.pad_token_id = cls.model.config.pad_token_id
cls.tokenizer.padding_side = "left"
cls.device_properties = get_device_properties()
def test_simple_generate(self):
expectations = Expectations(
{
(
"cuda",
8,
): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all having a good time.",
(
"rocm",
9,
): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here",
(
"xpu",
3,
): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all doing well. Today I",
}
)
self.model.to(torch_device)
input_ids = self.tokenizer("Hey how are you doing on this lovely evening?", return_tensors="pt")[
"input_ids"
].to(torch_device)
out = self.model.generate(input_ids, do_sample=False, max_new_tokens=10)
output_sentence = self.tokenizer.decode(out[0, :])
expected = expectations.get_expectation()
self.assertEqual(output_sentence, expected)
# TODO: there are significant differences in the logits across major cuda versions, which shouldn't exist
if self.device_properties == ("cuda", 8):
with torch.no_grad():
logits = self.model(input_ids=input_ids, logits_to_keep=40).logits
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
[
149., 142., 146., 142., 143., 144., 142., 145.,
142., 146., 144., 146., 147., 147., 148., 145.,
147., 145., 145., 145., 145., 144., 144., 144.,
144., 145., 147., 146., 144., 144., 148., 147.,
148., 147., 147., 147., 146., 146., 148., 148.
], dtype=torch.bfloat16) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1)
@require_deterministic_for_xpu
def test_simple_batched_generate_with_padding(self):
# Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4.
#
# Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s,
# considering differences in hardware processing and potential deviations in generated text.
EXPECTED_TEXTS = Expectations(
{
("cuda", 7): [],
("cuda", 8): [
"<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here",
"!!!<|begin_of_text|>I am late! I need to get to work! I have to get to the",
],
("rocm", 9): [
"<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here",
"!!!<|begin_of_text|>I am late! I need to be at the airport in 20 minutes! I",
],
("xpu", 3): [
"<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all doing well. Today I",
"!!!<|begin_of_text|>I am late! I need to get to work! I have to get to the",
],
}
)
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
self.model.to(torch_device)
inputs = self.tokenizer(
["Hey how are you doing on this lovely evening?", "I am late! I need to"],
padding=True,
return_tensors="pt",
).to(torch_device)
out = self.model.generate(**inputs, do_sample=False, max_new_tokens=10)
output_sentences = self.tokenizer.batch_decode(out)
self.assertEqual(output_sentences[0], EXPECTED_TEXT[0])
self.assertEqual(output_sentences[1], EXPECTED_TEXT[1])
# TODO: there are significant differences in the logits across major cuda versions, which shouldn't exist
if self.device_properties == ("cuda", 8):
with torch.no_grad():
logits = self.model(input_ids=inputs["input_ids"]).logits
EXPECTED_LOGITS_NO_GRAD_0 = torch.tensor(
[
149., 142., 146., 142., 143., 144., 142., 145.,
142., 146., 144., 146., 147., 147., 148., 145.,
147., 145., 145., 145., 145., 144., 144., 144.,
144., 145., 147., 146., 144., 144., 148., 147.,
148., 147., 147., 147., 146., 146., 148., 148.
], dtype=torch.bfloat16) # fmt: skip
EXPECTED_LOGITS_NO_GRAD_1 = torch.tensor(
[
182., 178., 177., 174., 176., 176., 178., 178.,
177., 179., 176., 183., 180., 182., 179., 174.,
178., 176., 176., 175., 175., 175., 174., 173.,
174., 182., 180., 176., 177., 177., 180., 176.,
178., 177., 177., 175., 176., 177., 175., 177.
], dtype=torch.bfloat16) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_0, rtol=1e-3, atol=1)
torch.testing.assert_close(logits[1, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_1, rtol=1e-3, atol=1)