transformers/tests/generation/test_candidate_generator.py
Jonathan Mamou 121f91d36c
prune LM Head for USD (#36695)
* initial commit

* fix

* fix style

* set default to prune

* add tests

* comment

* remove prune flag from generate

* address Joao's comments

* deprecate_kwarg

* add doc

* fix target_vocab_size

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fix deprecated argument assistant_model_device

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-08 16:44:10 +01:00

340 lines
15 KiB
Python

import gc
import unittest
import weakref
from unittest.mock import MagicMock
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
from transformers.generation.candidate_generator import (
AssistantToTargetTranslator,
AssistantVocabTranslatorCache,
UniversalSpeculativeDecodingGenerator,
)
from transformers.testing_utils import require_torch, torch_device
@require_torch
class TestAssistantToTargetTranslator(unittest.TestCase):
def setUp(self):
# Create mock tokenizers with predefined vocabularies
self.target_tokenizer = MagicMock()
self.assistant_tokenizer = MagicMock()
self.assistant_model = MagicMock(device=torch_device)
# Define mock vocabularies for the tokenizers
self.target_vocab = {"hello": 0, "world": 1, "foo": 2, "bar": 3}
self.assistant_vocab = {"hello": 0, "world": 1, "foo": 2, "baz": 4}
self.target_tokenizer.get_vocab.return_value = self.target_vocab
self.assistant_tokenizer.get_vocab.return_value = self.assistant_vocab
self.target_vocab_size = 6
# Instantiate the class under test
self.translator = AssistantToTargetTranslator(
target_tokenizer=self.target_tokenizer,
assistant_tokenizer=self.assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
def test_get_assistant_to_target_input_ids(self):
"""Test the mapping from assistant tokens to target tokens."""
expected_mapping = [0, 1, 2, self.translator.SUPPRESS_TOKEN_ID, self.translator.SUPPRESS_TOKEN_ID]
actual_mapping = self.translator._assistant_to_target_input_ids.tolist()
self.assertEqual(actual_mapping, expected_mapping)
def test_get_suppress_input_ids(self):
"""Test the suppression of assistant input IDs not present in the target vocabulary."""
expected_suppress_ids = [3, 4]
actual_suppress_ids = self.translator._get_suppress_input_ids().tolist()
self.assertEqual(actual_suppress_ids, expected_suppress_ids)
def test_get_target_ids(self):
"""Test the translation of assistant candidate IDs to target candidate IDs."""
assistant_input_ids = torch.LongTensor([[0, 1, 2]]).to(
self.assistant_model.device
) # 'hello world foo' in assistant tokenizer
target_input_ids = torch.LongTensor([[0, 1, 2]]).to(
self.assistant_model.device
) # 'hello world foo' in target tokenizer
assistant_candidate_ids = torch.LongTensor([[0, 1, 2, 4]]).to(
self.assistant_model.device
) # 'hello world foo baz' in assistant tokenizer
expected_target_ids = torch.LongTensor(
[[0, 1, 2, self.translator.SUPPRESS_TOKEN_ID]]
).to(
self.assistant_model.device
) # 'hello world foo baz' in target tokenizer (baz is mapped to self.translator.suppress_tokens_id since it does not exist in target vocab)
actual_target_ids = self.translator.get_target_ids(
assistant_input_ids, target_input_ids, assistant_candidate_ids
)
self.assertTrue(torch.equal(actual_target_ids, expected_target_ids))
def test_get_target_logits(self):
"""Test the conversion of assistant logits to target logits."""
# Assistant logits for IDs 0, 1, 2
assistant_logits = torch.FloatTensor([[[0.1, 0.2, 0.3, 0.4, self.translator.FILTER_VALUE]]]).to(
self.assistant_model.device
) # Shape (1, 1, 5)
# Expected target logits (target_vocab_size = 4)
expected_target_logits = torch.full((1, 1, self.target_vocab_size), self.translator.FILTER_VALUE).to(
self.assistant_model.device
)
expected_target_logits[0, 0, 0] = 0.1 # 'hello'
expected_target_logits[0, 0, 1] = 0.2 # 'world'
expected_target_logits[0, 0, 2] = 0.3 # 'foo'
# The 'bar' token in target vocab remains at -inf
actual_target_logits = self.translator.get_target_logits(assistant_logits)
self.assertTrue(torch.equal(actual_target_logits, expected_target_logits))
class MockTokenizer:
"""A simple mock tokenizer class that supports weak references."""
def __init__(self, vocab=None):
self._vocab = vocab or {}
def get_vocab(self):
return self._vocab
def __call__(self, text, add_special_tokens=True):
# Mock implementation of the __call__ method
tokens = text.split()
input_ids = [self._vocab.get(token, 0) for token in tokens]
return {"input_ids": input_ids}
@require_torch
class TestAssistantVocabTranslatorCache(unittest.TestCase):
def setUp(self):
# Clear the cache before each test
AssistantVocabTranslatorCache._cache.clear()
# Create mock tokenizers with different vocabularies
self.target_tokenizer = MockTokenizer({"hello": 0, "world": 1})
self.assistant_tokenizer = MockTokenizer({"hello": 0, "world": 1, "foo": 2})
self.other_target_tokenizer = MockTokenizer({"foo": 2, "bar": 3})
self.other_assistant_tokenizer = MockTokenizer({"baz": 4, "qux": 5})
self.assistant_model = MagicMock(device=torch_device)
self.target_vocab_size = 6
def test_same_instance_for_same_tokenizers(self):
"""Test that the same translator is returned for the same tokenizers."""
translator1 = AssistantVocabTranslatorCache.get_translator(
self.target_tokenizer,
self.assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
translator2 = AssistantVocabTranslatorCache.get_translator(
self.target_tokenizer,
self.assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
self.assertIs(translator1, translator2, "Translators should be cached and identical")
def test_different_instances_for_different_tokenizers(self):
"""Test that different tokenizers produce different translators."""
translator1 = AssistantVocabTranslatorCache.get_translator(
self.target_tokenizer,
self.assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
translator2 = AssistantVocabTranslatorCache.get_translator(
self.other_target_tokenizer,
self.other_assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
self.assertIsNot(translator1, translator2, "Translators should differ for different tokenizers")
def test_cache_with_weakref_key(self):
"""Ensure that the cache uses weak references as keys."""
initial_cache_size = len(AssistantVocabTranslatorCache._cache)
target_tokenizer = MockTokenizer({"hello": 0})
assistant_tokenizer = MockTokenizer({"hello": 0})
# Store translator in a local variable to avoid it being kept alive
translator = AssistantVocabTranslatorCache.get_translator(
target_tokenizer,
assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
self.assertEqual(len(AssistantVocabTranslatorCache._cache), initial_cache_size + 1)
# Delete all strong references
del target_tokenizer
del assistant_tokenizer
del translator
# Force garbage collection
gc.collect()
# Call cleanup to remove dead entries
AssistantVocabTranslatorCache.cleanup()
# The cache size remains increased due to strong references
self.assertEqual(len(AssistantVocabTranslatorCache._cache), initial_cache_size + 1)
def test_weakref_cache_cleanup(self):
"""Test that the cache cleans up translators when tokenizers are garbage collected."""
def create_translator():
target_tokenizer = MockTokenizer({"hello": 0})
assistant_tokenizer = MockTokenizer({"hello": 0})
translator = AssistantVocabTranslatorCache.get_translator(
target_tokenizer,
assistant_tokenizer,
target_vocab_size=self.target_vocab_size,
assistant_model=self.assistant_model,
assistant_prune_lm_head=False,
)
# Create weak references before returning
refs = (weakref.ref(translator), weakref.ref(target_tokenizer), weakref.ref(assistant_tokenizer))
# Remove strong references inside the function
del target_tokenizer
del assistant_tokenizer
del translator
return refs
translator_ref, target_ref, assistant_ref = create_translator()
# Force garbage collection
gc.collect()
# Call cleanup to remove dead entries
AssistantVocabTranslatorCache.cleanup()
# The tokenizers and translator are not garbage collected due to strong references
self.assertIsNotNone(target_ref(), "Target tokenizer should still be alive due to strong references")
self.assertIsNotNone(assistant_ref(), "Assistant tokenizer should still be alive due to strong references")
self.assertIsNotNone(translator_ref(), "Translator should still be alive due to strong references")
@require_torch
class TestUniversalSpeculativeDecoding(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.target_name = "hf-internal-testing/tiny-random-LlamaForCausalLM"
cls.assistant_name = "hf-internal-testing/tiny-random-PhiForCausalLM"
def setUp(self):
self.target_tokenizer = AutoTokenizer.from_pretrained(self.target_name)
self.target_config = AutoConfig.from_pretrained(self.target_name)
self.assistant_model = AutoModelForCausalLM.from_pretrained(self.assistant_name).to(torch_device)
self.assistant_tokenizer = AutoTokenizer.from_pretrained(self.assistant_name)
self.generation_config = GenerationConfig()
# Ensure required tokens exist
if self.target_tokenizer.pad_token_id is None:
self.target_tokenizer.pad_token_id = self.target_tokenizer.eos_token_id
if self.target_tokenizer.bos_token_id is None:
self.target_tokenizer.bos_token_id = self.target_tokenizer.eos_token_id
if self.assistant_tokenizer.pad_token_id is None:
self.assistant_tokenizer.pad_token_id = self.assistant_tokenizer.eos_token_id
if self.assistant_tokenizer.bos_token_id is None:
self.assistant_tokenizer.bos_token_id = self.assistant_tokenizer.eos_token_id
self.input_ids = torch.tensor([[1, 2, 3]]).to(torch_device)
self.model_kwargs = {
"attention_mask": torch.ones_like(self.input_ids).to(torch_device),
}
atm_translator = AssistantVocabTranslatorCache.get_translator(
target_tokenizer=self.target_tokenizer,
assistant_tokenizer=self.assistant_tokenizer,
assistant_model=self.assistant_model,
target_vocab_size=self.target_config.vocab_size,
)
self.generator = UniversalSpeculativeDecodingGenerator(
input_ids=self.input_ids,
assistant_model=self.assistant_model,
target_tokenizer=self.target_tokenizer,
assistant_tokenizer=self.assistant_tokenizer,
generation_config=self.generation_config,
model_kwargs=self.model_kwargs,
atm_translator=atm_translator,
)
def test_basic_generation(self):
"""Test basic speculative decoding works"""
input_text = "The quick brown fox"
input_ids = self.target_tokenizer.encode(input_text, return_tensors="pt")
self.generator.input_ids = input_ids
candidates, scores = self.generator.get_candidates(input_ids)
self.assertIsNotNone(candidates)
self.assertIsNotNone(scores)
self.assertTrue(torch.is_tensor(candidates))
self.assertTrue(torch.is_tensor(scores))
def test_mismatched_vocabularies(self):
"""Test handling of mismatched vocabularies between models"""
# Create input with tokens present in main but not assistant vocab
# Find a token that is not in the assistant tokenizer but in
# the main tokenizer.
missing_token = next(
token
for token in self.target_tokenizer.get_vocab()
if token not in self.assistant_tokenizer.get_vocab()
and token not in self.target_tokenizer.all_special_tokens
and "reserved_" not in token
)
input_ids = torch.tensor([[self.target_tokenizer.convert_tokens_to_ids(missing_token)]])
self.generator.input_ids = input_ids
candidates, _ = self.generator.get_candidates(input_ids)
self.assertIsNotNone(candidates)
def test_speculation_depth(self):
"""Test different speculation depths"""
input_ids = self.target_tokenizer.encode("Test text", return_tensors="pt")
self.generator.input_ids = input_ids
for depth in [1, 8, 17]:
self.generator.num_assistant_tokens = depth
candidates, _ = self.generator.get_candidates(input_ids)
self.assertLessEqual(candidates.shape[1] - input_ids.shape[1], depth)
def test_device_consistency(self):
"""Test handling of inputs on different devices"""
input_ids = torch.tensor([[1, 2, 3]]).to(torch_device)
self.generator.input_ids = input_ids
candidates, _ = self.generator.get_candidates(input_ids)
self.assertEqual(candidates.device, input_ids.device)
def test_usd_vs_vanilla_sampling(cls):
"""Test that USD matches vanilla sampling with temperature set to nearly 0"""
prompt = "Test text"
pipe_vanilla = pipeline(
"text-generation",
model=cls.target_name,
)
pipe_vanilla_output = pipe_vanilla(prompt, max_new_tokens=5, do_sample=False)
vanilla_text = pipe_vanilla_output[0]["generated_text"]
pipe_usd = pipeline(
"text-generation",
model=cls.target_name,
assistant_model=cls.assistant_name,
)
pipe_usd_output = pipe_usd(prompt, max_new_tokens=5, do_sample=True, temperature=1e-9) # Nearly 0 temperature
usd_text = pipe_usd_output[0]["generated_text"]
# Assert that the outputs match
cls.assertEqual(usd_text, vanilla_text)