transformers/tests/models/gemma3/test_modeling_gemma3.py
Kingsley 53742b11f5
Gemma3 processor typo (#36710)
* fix typo when  is on

* tiny

* add test and remove 'text_crops'

* lint
2025-03-14 13:07:55 +01:00

554 lines
22 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma3 model."""
import unittest
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Gemma3Config,
Gemma3TextConfig,
is_torch_available,
)
from transformers.testing_utils import (
cleanup,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...models.gemma.test_modeling_gemma import GemmaModelTester
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import (
Gemma3ForCausalLM,
Gemma3ForConditionalGeneration,
Gemma3Processor,
Gemma3TextModel,
)
class Gemma3ModelTester(GemmaModelTester):
if is_torch_available():
config_class = Gemma3TextConfig
model_class = Gemma3TextModel
for_causal_lm_class = Gemma3ForCausalLM
@require_torch
class Gemma3ModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Gemma3TextModel, Gemma3ForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (Gemma3ForCausalLM,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
def setUp(self):
self.model_tester = Gemma3ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Gemma3Config, hidden_size=37)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@parameterized.expand([("random",), ("same",)])
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_continue_from_inputs_embeds(self):
pass
@unittest.skip("Gemma3 has HybridCache which auto-compiles. Compile and FA2 don't work together.")
def test_eager_matches_fa2_generate(self):
pass
@unittest.skip(
reason="HybridCache can't be gathered because it is not iterable. Adding a simple iter and dumping `distributed_iterator`"
" as in Dynamic Cache doesnt work. NOTE: @gante all cache objects would need better compatibility with multi gpu setting"
)
def test_multi_gpu_data_parallel_forward(self):
pass
class Gemma3Vision2TextModelTester:
def __init__(
self,
parent,
mm_tokens_per_image=2,
image_token_index=1,
boi_token_index=2,
eoi_token_index=3,
seq_length=25,
is_training=True,
vision_config={
"use_labels": True,
"image_size": 20,
"patch_size": 5,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
use_cache=False,
):
self.parent = parent
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
self.mm_tokens_per_image = mm_tokens_per_image
self.image_token_index = image_token_index
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.llm_tester = Gemma3ModelTester(self.parent)
self.text_config = self.llm_tester.get_config()
self.vision_config = vision_config
self.seq_length = seq_length
self.pad_token_id = self.text_config.pad_token_id
self.num_hidden_layers = self.text_config.num_hidden_layers
self.vocab_size = self.text_config.vocab_size
self.hidden_size = self.text_config.hidden_size
self.num_attention_heads = self.text_config.num_attention_heads
self.is_training = is_training
self.batch_size = 3
self.num_channels = vision_config["num_channels"]
self.image_size = vision_config["image_size"]
self.encoder_seq_length = seq_length
self.use_cache = use_cache
def get_config(self):
return Gemma3Config(
text_config=self.text_config,
vision_config=self.vision_config,
image_token_index=self.image_token_index,
boi_token_index=self.boi_token_index,
eoi_token_index=self.eoi_token_index,
mm_tokens_per_image=self.mm_tokens_per_image,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(self.pad_token_id).to(torch_device)
# set the 3 first tokens to be image, and ensure that no other tokens are image tokens
# do not change this unless you modified image size or patch size
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, :1] = config.image_token_index
token_type_ids = torch.zeros_like(input_ids)
token_type_ids[input_ids == config.image_token_index] = 1
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
return config, inputs_dict
@require_torch
class Gemma3Vision2TextModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Gemma3ForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Gemma3ForConditionalGeneration,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
test_missing_keys = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
# MP works but offload doesn't work when the SigLIP MultiheadAttention is offloaded
# TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
# in the dispatch_model function
test_cpu_offload = False
test_disk_offload_safetensors = False
test_disk_offload_bin = False
def setUp(self):
self.model_tester = Gemma3Vision2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Gemma3Config, hidden_size=37)
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(
reason="HybridCache can't be gathered because it is not iterable. Adding a simple iter and dumping `distributed_iterator`"
" as in Dynamic Cache doesnt work. NOTE: @gante all cache objects would need better compatibility with multi gpu setting"
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@parameterized.expand([("random",), ("same",)])
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Gemma3 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Gemma3 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(
reason="Siglip (vision backbone) uses the same initialization scheme as the Flax original implementation"
)
def test_initialization(self):
pass
@unittest.skip(
reason="Siglip has no FLEX attention, and we don't have a proper way to set/test attn in VLMs. TODO @raushan"
)
def test_flex_attention_with_grads(self):
pass
@slow
@require_torch_gpu
# @require_read_token
class Gemma3IntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = Gemma3Processor.from_pretrained("gg-hf-g/gemma-3-4b-it", padding_side="left")
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
self.messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"type": "image", "url": url},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_model_4b_bf16(self):
model_id = "gg-hf-g/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
inputs = self.processor.apply_chat_template(
self.messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ['user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nCertainly! \n\nThe image shows a brown cow standing on a sandy beach with clear blue water and a blue sky in the background. It looks like'] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_batch(self):
model_id = "gg-hf-g/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
messages_2 = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
},
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "Are these images identical?"},
],
},
]
inputs = self.processor.apply_chat_template(
[self.messages, messages_2],
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = [
'user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nCertainly! \n\nThe image shows a brown cow standing on a sandy beach with clear turquoise water and a blue sky in the background. It looks like',
"user\nYou are a helpful assistant.\n\n\n\n\n\n\n\n\n\nAre these images identical?\nmodel\nNo, these images are not identical. \n\nHere's a breakdown of the differences:\n\n* **Image 1:** Shows a cow"
] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_crops(self):
model_id = "gg-hf-g/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
crop_config = {
"images_kwargs": {
"do_pan_and_scan": True,
"pan_and_scan_max_num_crops": 448,
"pan_and_scan_min_crop_size": 32,
"pan_and_scan_min_ratio_to_activate": 0.3,
}
}
inputs = self.processor.apply_chat_template(
self.messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
**crop_config,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_NUM_IMAGES = 3 # one for the origin image and two crops of images
EXPECTED_TEXTS = ["user\nYou are a helpful assistant.\n\nHere is the original image \n\n\n\n and here are some crops to help you see better \n\n\n\n \n\n\n\nDescribe this image in detail.\nmodel\nHere's a detailed description of the image:\n\n**Overall Impression:**\n\nThe image is a close-up shot of a garden scene featuring several"] # fmt: skip
self.assertEqual(len(inputs["pixel_values"]), EXPECTED_NUM_IMAGES)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_multiimage(self):
model_id = "gg-hf-g/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "What do you see here?"},
],
},
]
inputs = self.processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ["user\nYou are a helpful assistant.\n\n\n\n\n\nWhat do you see here?\nmodel\nOkay, let's break down what I see in this image:\n\n**Overall Scene:**\n\nIt looks like a street scene in a vibrant,"] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_1b_text_only(self):
model_id = "gg-hf-g/gemma-3-1b-it"
model = Gemma3ForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
inputs = tokenizer("Write a poem about Machine Learning.", return_tensors="pt").to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ['Write a poem about Machine Learning.\n\n---\n\nThe data flows, a river deep,\nWith patterns hidden, secrets sleep.\nA neural net, a watchful eye,\nLearning'] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
# TODO: raushan FA2 generates gibberish for no reason, check later
# @require_flash_attn
# @require_torch_gpu
# @mark.flash_attn_test
# def test_model_4b_flash_attn(self):
# model_id = "gg-hf-g/gemma-3-4b-it"
#
# model = Gemma3ForConditionalGeneration.from_pretrained(
# model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
# ).to(torch_device)
#
# inputs = self.processor.apply_chat_template(
# self.messages,
# tokenize=True,
# return_dict=True,
# return_tensors="pt",
# add_generation_prompt=True,
# ).to(torch_device)
#
# output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
# output_text = self.processor.batch_decode(output, skip_special_tokens=True)
#
# EXPECTED_TEXTS = ['user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nPlease look out that you are what Grammy and Vi- ||.xfairesr--ith alerts themselves are||ِّ\n\n**General Note:**'] # fmt: skip
# self.assertEqual(output_text, EXPECTED_TEXTS)
@parameterized.expand([("flash_attention_2",), ("sdpa",), ("eager",)])
def test_generation_beyond_sliding_window(self, attn_implementation: str):
"""Test that we can correctly generate beyond the sliding window. This is non trivial as
we need to correctly slice the attention mask in all cases (because we use a HybridCache).
Outputs for every attention functions should be coherent and identical.
"""
model_id = "gg-hf-g/gemma-3-1b-it"
input_text = [
"This is a nice place. " * 800 + "I really enjoy the scenery,", # This is larger than 4096 tokens
"A list of colors: red, blue", # This will almost all be padding tokens
]
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
inputs = tokenizer(input_text, padding=True, return_tensors="pt").to(torch_device)
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation=attn_implementation, torch_dtype=torch.float16
).to(torch_device)
# Make sure prefill is larger than sliding window
input_size = inputs.input_ids.shape[-1]
self.assertTrue(input_size > model.config.sliding_window)
out = model.generate(**inputs, max_new_tokens=20)[:, input_size:]
output_text = tokenizer.batch_decode(out)
EXPECTED_COMPLETIONS = [" and I'm going to take a walk.\n\nI really enjoy the scenery, and I'", ", green, yellow, orange, purple, brown, black, white, gray.\n\nI'"] # fmt: skip
self.assertEqual(output_text, EXPECTED_COMPLETIONS)