transformers/tests/models/gemma3/test_processing_gemma3.py
Ryan Mullins 50d3530aa0
Gemma3 (#36658)
* Fix converter

* [Broken] Adds Gemma 3 to Hugging Face Transformers

* Consolidating Config and Processor params across impls

* Sorting out configuration parameters. Adds qk_norm before RoPE. Still not sure if RoPE is right.

* Additional plumbing for CausalLM and ConditionalGeneration variants

* incomplete draft of Orbax conversion script

* More complete checkpoint conversion

* Supporting Gemma 3 1B checkpoints

* Updating RoPE for multiple frequencies

* Adjustments to rotary embedder

* Proof of life for text-only operation

* Updating the conversion script to handle multimodal projection weights

* Fixing tet-only conversions

* Cleaner conversion script with multimodal support and a simpler processor

* Additional refatcors to the Gemma3Processor

* Simplified Processor to work over text representations

* Updated conversion script to join text and vision embeddings at converion time

* Logging for debugging

* Update src/transformers/models/gemma2/modeling_gemma2.py

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Removed extraneous Config params

* Switching to fast tokenizer for checkpoint conversions

* isolating siglip for performance tetsing

* Minor changes for debugging tests against baselines

* Adding average pooling for soft tokens

* Updating processor code to enable simpler embedding interleaving for arbitrary number of images in prompts

* Updating conversion script for ShieldGemma 2 conversion compatibility

* Allow disable_compile to be provided as a kwarg

* Refresh from modular

* Updated conversion script and corrected sliding window

* Fix type mismatch in cache_position (#4)

* Fix dtype (#5)

* Fix type mismatch in cache_position

* Actually fix in the modular file

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

---------

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* fixes for embedding table overflow and missing image_soft_token_mask from Gemma3Processor

* Adding 2D pooling for image embeddings

* Revert "Adding 2D pooling for image embeddings"

This reverts commit 65350cf531.

* Gemma3 average pooling changed from 1D to 2D

* Major refactor to Gemma3MultimodalInputProjection

* Updating Gemm 3 Auto* registrations

* Add option to save Gemma 3 chat template with tokenizer during weights conversion

* Removing unused imports

* Moving out-of-vocab handling from Gemma3Processor to Gemma3ForConditionalGeneration

* Removing duplicate config property

* Removing final logit softcapping and 1-indexing of position ids

* Fixing image processor config and none --> None typo

* Fixing sliding window size for 1B

* Updating image_mean and image_std in Image Processor

* Attention masking changed to lower triangular

* Moving image special tokens to conversion script

* Mirror image processor defaults from conversion script into Gemma3ProcessorKwargs

* Remove special token variables from symbol space

* Moving image soft token mask computation from Gemma3Processor to Gemma3ForConditionalGeneration

* tie lm_head and embedding weights

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* Correct tied weights in Gemma3CausalLM

* iterative bidirectional attention

* resolving merge conflicts

* Reverting to Gemma 2 HybridCache with sldiing window support and a sliding_window_pattern of 6

* Correcting RoPE scaling

* clean up first pass, dummy model geenration works

* final clean up before fixing tests

* causal lm test works, so fine

* Fix conversion

* Update src/transformers/models/gemma3/processing_gemma3.py

* model tests are happy

* processor tests are happy

* image processing tests added

* fixup

* Fix pre-processing in conversion

* Inputs merging

* Do not normalize vision embeddings

* Apply Ryan's (and team) changes to attention

* token type ids + mask

* template

* move embed scale, add rope scale, fix tests

* Add chat template to tokenizer

* Use prefix for causal model loading

* use existing code for sliding mask from gemma2

* self.embed_tokens already normalizes

* Correcting Gemma3TextConfig parameters in conversion script

* typo, modular overwrites my fixes

* enable device map for text model

* Conversion updates

* ultra nit: no einsums

* update image token

* copy deepcopy config + some docs

* add some test, still WIP

* Refactoring --include_chat_tempalte logic in converter

* Update src/transformers/models/gemma3/modular_gemma3.py

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Add eos tokens for instruct models

* dump so i can work on dgx

* Removing add_bos by default

* dump

* add fast im proc

* docs for PaS + fixup

* another fixup

* one more fixup

* fix tests

* Inverting prior BOS change

* ultra nit

* Reverting to Tokenizer saved with add_bos_token=True and chat template starting with BOS

* resize embeds, remove sqrt, add slow test outputs

* FA2 but quality is meh

* nit

* skip FA2, no idea what happened

* last bit for green CI

* please, green CI for docs

* T_T

* Fix for Gemma3 logits

* Support both options for system prompt

* Update src/transformers/models/gemma3/image_processing_gemma3_fast.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Docs updates now that assets are live

* Style fixes

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Co-authored-by: Mayank Chaturvedi <imayank@google.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: Lysandre <hi@lysand.re>
2025-03-12 09:06:17 +01:00

137 lines
6.9 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from typing import Optional
from transformers import Gemma3Processor, GemmaTokenizer
from transformers.testing_utils import get_tests_dir, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import Gemma3ImageProcessor
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_vision
class Gemma3ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = Gemma3Processor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
gemma3_image_processor_kwargs = {
"do_pan_and_scan": True,
"pan_and_scan_min_crop_size": 256,
"pan_and_scan_max_num_crops": 4,
"pan_and_scan_min_ratio_to_activate": 1.2,
}
image_processor = Gemma3ImageProcessor.from_pretrained(
"google/siglip-so400m-patch14-384", **gemma3_image_processor_kwargs
)
extra_special_tokens = {
"image_token": "<image_soft_token>",
"boi_token": "<start_of_image>",
"eoi_token": "<end_of_image>",
}
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True, extra_special_tokens=extra_special_tokens)
processor_kwargs = self.prepare_processor_dict()
processor = Gemma3Processor(image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs)
processor.save_pretrained(self.tmpdirname)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
# TODO: raushan or arthur: add the real chat template
def prepare_processor_dict(self):
return {
"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "image_seq_length": 3,
} # fmt: skip
# Override as VLMs need image tokens in prompts
def prepare_text_inputs(self, batch_size: Optional[int] = None):
if batch_size is None:
return "lower newer <start_of_image>"
if batch_size < 1:
raise ValueError("batch_size must be greater than 0")
if batch_size == 1:
return ["lower newer <start_of_image>"]
return ["lower newer <start_of_image>", "<start_of_image> upper older longer string"] + [
"<start_of_image> lower newer"
] * (batch_size - 2)
# Override as Gemma3 needs images to be an explicitly nested batch
def prepare_image_inputs(self, batch_size: Optional[int] = None):
"""This function prepares a list of PIL images for testing"""
images = super().prepare_image_inputs(batch_size)
if isinstance(images, (list, tuple)):
images = [[image] for image in images]
return images
def test_text_with_image_tokens(self):
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
text_multi_images = f"{processor.boi_token}{processor.boi_token}Dummy text!"
text_single_image = f"{processor.boi_token}Dummy text!"
text_no_image = "Dummy text!"
image = self.prepare_image_inputs()
# If text has no image tokens, iamge should be `None`
with self.assertRaises(ValueError):
_ = processor(text=text_no_image, images=image, return_tensors="np")
# We can't be sure what is users intention: if user wants one image per text OR two images for first text and no image for second text
with self.assertRaises(ValueError):
_ = processor(text=[text_single_image, text_single_image], images=[image, image], return_tensors="np")
# The users is expected to be explicit about which image belong to which text by nesting the images list
out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np")
out_batch_oneimage = processor(
text=[text_single_image, text_single_image], images=[[image], [image]], return_tensors="np"
)
self.assertListEqual(
out_batch_oneimage[self.images_input_name].tolist(), out_multiimages[self.images_input_name].tolist()
)
def test_pan_and_scan(self):
processor_components = self.prepare_components()
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="np",
do_pan_and_scan=True,
image_seq_length=2,
pan_and_scan_min_crop_size=10,
)
# base image + 4 crops
self.assertEqual(len(inputs[self.images_input_name]), 5)
self.assertEqual(len(inputs[self.text_input_name][0]), 67)