mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 22:30:09 +06:00

* Fix converter
* [Broken] Adds Gemma 3 to Hugging Face Transformers
* Consolidating Config and Processor params across impls
* Sorting out configuration parameters. Adds qk_norm before RoPE. Still not sure if RoPE is right.
* Additional plumbing for CausalLM and ConditionalGeneration variants
* incomplete draft of Orbax conversion script
* More complete checkpoint conversion
* Supporting Gemma 3 1B checkpoints
* Updating RoPE for multiple frequencies
* Adjustments to rotary embedder
* Proof of life for text-only operation
* Updating the conversion script to handle multimodal projection weights
* Fixing tet-only conversions
* Cleaner conversion script with multimodal support and a simpler processor
* Additional refatcors to the Gemma3Processor
* Simplified Processor to work over text representations
* Updated conversion script to join text and vision embeddings at converion time
* Logging for debugging
* Update src/transformers/models/gemma2/modeling_gemma2.py
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Removed extraneous Config params
* Switching to fast tokenizer for checkpoint conversions
* isolating siglip for performance tetsing
* Minor changes for debugging tests against baselines
* Adding average pooling for soft tokens
* Updating processor code to enable simpler embedding interleaving for arbitrary number of images in prompts
* Updating conversion script for ShieldGemma 2 conversion compatibility
* Allow disable_compile to be provided as a kwarg
* Refresh from modular
* Updated conversion script and corrected sliding window
* Fix type mismatch in cache_position (#4)
* Fix dtype (#5)
* Fix type mismatch in cache_position
* Actually fix in the modular file
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
---------
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
* fixes for embedding table overflow and missing image_soft_token_mask from Gemma3Processor
* Adding 2D pooling for image embeddings
* Revert "Adding 2D pooling for image embeddings"
This reverts commit 65350cf531
.
* Gemma3 average pooling changed from 1D to 2D
* Major refactor to Gemma3MultimodalInputProjection
* Updating Gemm 3 Auto* registrations
* Add option to save Gemma 3 chat template with tokenizer during weights conversion
* Removing unused imports
* Moving out-of-vocab handling from Gemma3Processor to Gemma3ForConditionalGeneration
* Removing duplicate config property
* Removing final logit softcapping and 1-indexing of position ids
* Fixing image processor config and none --> None typo
* Fixing sliding window size for 1B
* Updating image_mean and image_std in Image Processor
* Attention masking changed to lower triangular
* Moving image special tokens to conversion script
* Mirror image processor defaults from conversion script into Gemma3ProcessorKwargs
* Remove special token variables from symbol space
* Moving image soft token mask computation from Gemma3Processor to Gemma3ForConditionalGeneration
* tie lm_head and embedding weights
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Correct tied weights in Gemma3CausalLM
* iterative bidirectional attention
* resolving merge conflicts
* Reverting to Gemma 2 HybridCache with sldiing window support and a sliding_window_pattern of 6
* Correcting RoPE scaling
* clean up first pass, dummy model geenration works
* final clean up before fixing tests
* causal lm test works, so fine
* Fix conversion
* Update src/transformers/models/gemma3/processing_gemma3.py
* model tests are happy
* processor tests are happy
* image processing tests added
* fixup
* Fix pre-processing in conversion
* Inputs merging
* Do not normalize vision embeddings
* Apply Ryan's (and team) changes to attention
* token type ids + mask
* template
* move embed scale, add rope scale, fix tests
* Add chat template to tokenizer
* Use prefix for causal model loading
* use existing code for sliding mask from gemma2
* self.embed_tokens already normalizes
* Correcting Gemma3TextConfig parameters in conversion script
* typo, modular overwrites my fixes
* enable device map for text model
* Conversion updates
* ultra nit: no einsums
* update image token
* copy deepcopy config + some docs
* add some test, still WIP
* Refactoring --include_chat_tempalte logic in converter
* Update src/transformers/models/gemma3/modular_gemma3.py
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
* Add eos tokens for instruct models
* dump so i can work on dgx
* Removing add_bos by default
* dump
* add fast im proc
* docs for PaS + fixup
* another fixup
* one more fixup
* fix tests
* Inverting prior BOS change
* ultra nit
* Reverting to Tokenizer saved with add_bos_token=True and chat template starting with BOS
* resize embeds, remove sqrt, add slow test outputs
* FA2 but quality is meh
* nit
* skip FA2, no idea what happened
* last bit for green CI
* please, green CI for docs
* T_T
* Fix for Gemma3 logits
* Support both options for system prompt
* Update src/transformers/models/gemma3/image_processing_gemma3_fast.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Docs updates now that assets are live
* Style fixes
---------
Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Co-authored-by: Mayank Chaturvedi <imayank@google.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: Lysandre <hi@lysand.re>
230 lines
10 KiB
Python
230 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import Gemma3ImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import Gemma3ImageProcessorFast
|
|
|
|
|
|
class Gemma3ImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_normalize=True,
|
|
image_mean=IMAGENET_STANDARD_MEAN,
|
|
image_std=IMAGENET_STANDARD_STD,
|
|
do_convert_rgb=True,
|
|
do_pan_and_scan=True,
|
|
pan_and_scan_min_crop_size=10,
|
|
pan_and_scan_max_num_crops=2,
|
|
pan_and_scan_min_ratio_to_activate=1.2,
|
|
):
|
|
super().__init__()
|
|
size = size if size is not None else {"height": 18, "width": 18}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_convert_rgb = do_convert_rgb
|
|
self.do_pan_and_scan = do_pan_and_scan
|
|
self.pan_and_scan_min_crop_size = pan_and_scan_min_crop_size
|
|
self.pan_and_scan_max_num_crops = pan_and_scan_max_num_crops
|
|
self.pan_and_scan_min_ratio_to_activate = pan_and_scan_min_ratio_to_activate
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_convert_rgb": self.do_convert_rgb,
|
|
"do_pan_and_scan": self.do_pan_and_scan,
|
|
"pan_and_scan_min_crop_size": self.pan_and_scan_min_crop_size,
|
|
"pan_and_scan_max_num_crops": self.pan_and_scan_max_num_crops,
|
|
"pan_and_scan_min_ratio_to_activate": self.pan_and_scan_min_ratio_to_activate,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Gemma3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = Gemma3ImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = Gemma3ImageProcessorFast if is_torchvision_available() else None
|
|
|
|
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->Gemma3
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = Gemma3ImageProcessingTester(self)
|
|
|
|
@property
|
|
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
|
self.assertTrue(hasattr(image_processing, "do_pan_and_scan"))
|
|
self.assertTrue(hasattr(image_processing, "pan_and_scan_min_crop_size"))
|
|
self.assertTrue(hasattr(image_processing, "pan_and_scan_max_num_crops"))
|
|
self.assertTrue(hasattr(image_processing, "pan_and_scan_min_ratio_to_activate"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
|
|
|
|
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=84)
|
|
self.assertEqual(image_processor.size, {"height": 84, "width": 84})
|
|
|
|
def test_pan_and_scan(self):
|
|
"""
|
|
Enables Pan and Scan path by choosing the correct input image resolution. If you are changing
|
|
image processor attributes for PaS, please update this test.
|
|
"""
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
"""This function prepares a list of PIL images"""
|
|
image_inputs = [np.random.randint(255, size=(3, 300, 600), dtype=np.uint8)] * 3
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
# Test not batched input, 3 images because we have base image + 2 crops
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (3, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched, 9 images because we have base image + 2 crops per each item
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (9, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
def test_call_pil(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (7, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
def test_call_numpy(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (7, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
def test_call_pytorch(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (7, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
@unittest.skip("Gemma3 doesn't work with 4 channels due to pan and scan method")
|
|
def test_call_numpy_4_channels(self):
|
|
pass
|