mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-02 04:10:06 +06:00

* No more Tuple, List, Dict * make fixup * More style fixes * Docstring fixes with regex replacement * Trigger tests * Redo fixes after rebase * Fix copies * [test all] * update * [test all] * update * [test all] * make style after rebase * Patch the hf_argparser test * Patch the hf_argparser test * style fixes * style fixes * style fixes * Fix docstrings in Cohere test * [test all] --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
287 lines
15 KiB
Python
287 lines
15 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# This file was automatically generated from examples/modular-transformers/modular_new_imgproc_model.py.
|
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
# modular_new_imgproc_model.py file directly. One of our CI enforces this.
|
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
from typing import Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
|
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
|
from ...image_utils import (
|
|
OPENAI_CLIP_MEAN,
|
|
OPENAI_CLIP_STD,
|
|
ChannelDimension,
|
|
ImageInput,
|
|
PILImageResampling,
|
|
infer_channel_dimension_format,
|
|
is_scaled_image,
|
|
make_flat_list_of_images,
|
|
to_numpy_array,
|
|
valid_images,
|
|
validate_preprocess_arguments,
|
|
)
|
|
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
|
|
|
|
|
|
if is_vision_available():
|
|
import PIL
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class ImgprocModelImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a IMGPROC_MODEL image processor.
|
|
|
|
Args:
|
|
do_resize (`bool`, *optional*, defaults to `True`):
|
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
|
`do_resize` parameter in the `preprocess` method.
|
|
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
|
|
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
|
method.
|
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
|
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
|
|
overridden by the `resample` parameter in the `preprocess` method.
|
|
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
|
`do_rescale` parameter in the `preprocess` method.
|
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
|
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
|
|
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
|
do_normalize (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
|
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
|
|
image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
|
|
overridden by the `image_mean` parameter in the `preprocess` method.
|
|
image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
|
Whether to convert the image to RGB.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
do_resize: bool = True,
|
|
size: Optional[dict[str, int]] = None,
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
do_rescale: bool = True,
|
|
rescale_factor: Union[int, float] = 1 / 255,
|
|
do_normalize: bool = True,
|
|
image_mean: Optional[Union[float, list[float]]] = None,
|
|
image_std: Optional[Union[float, list[float]]] = None,
|
|
do_convert_rgb: bool = True,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
size = size if size is not None else {"height": 384, "width": 384}
|
|
size = get_size_dict(size, default_to_square=True)
|
|
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.resample = resample
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
|
self.do_convert_rgb = do_convert_rgb
|
|
|
|
def resize(
|
|
self,
|
|
image: np.ndarray,
|
|
size: dict[str, int],
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> np.ndarray:
|
|
"""
|
|
Resize an image to `(size["height"], size["width"])`.
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
Image to resize.
|
|
size (`dict[str, int]`):
|
|
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
|
|
data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
|
image is used. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
|
|
Returns:
|
|
`np.ndarray`: The resized image.
|
|
"""
|
|
size = get_size_dict(size)
|
|
if "height" not in size or "width" not in size:
|
|
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
|
|
output_size = (size["height"], size["width"])
|
|
return resize(
|
|
image,
|
|
size=output_size,
|
|
resample=resample,
|
|
data_format=data_format,
|
|
input_data_format=input_data_format,
|
|
**kwargs,
|
|
)
|
|
|
|
@filter_out_non_signature_kwargs()
|
|
def preprocess(
|
|
self,
|
|
images: ImageInput,
|
|
do_resize: Optional[bool] = None,
|
|
size: Optional[dict[str, int]] = None,
|
|
resample: PILImageResampling = None,
|
|
do_rescale: Optional[bool] = None,
|
|
rescale_factor: Optional[float] = None,
|
|
do_normalize: Optional[bool] = None,
|
|
image_mean: Optional[Union[float, list[float]]] = None,
|
|
image_std: Optional[Union[float, list[float]]] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
do_convert_rgb: Optional[bool] = None,
|
|
data_format: ChannelDimension = ChannelDimension.FIRST,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
) -> PIL.Image.Image:
|
|
"""
|
|
Preprocess an image or batch of images.
|
|
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
Whether to resize the image.
|
|
size (`dict[str, int]`, *optional*, defaults to `self.size`):
|
|
Controls the size of the image after `resize`. The shortest edge of the image is resized to
|
|
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
|
|
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
|
|
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
|
|
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
|
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
Whether to rescale the image values between [0 - 1].
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
|
Whether to normalize the image.
|
|
image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
|
|
Image mean to normalize the image by if `do_normalize` is set to `True`.
|
|
image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
|
|
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
|
Whether to convert the image to RGB.
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- Unset: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- Unset: Use the channel dimension format of the input image.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
"""
|
|
do_resize = do_resize if do_resize is not None else self.do_resize
|
|
resample = resample if resample is not None else self.resample
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
|
image_mean = image_mean if image_mean is not None else self.image_mean
|
|
image_std = image_std if image_std is not None else self.image_std
|
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
|
|
|
size = size if size is not None else self.size
|
|
size = get_size_dict(size, default_to_square=False)
|
|
images = make_flat_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
|
|
validate_preprocess_arguments(
|
|
do_rescale=do_rescale,
|
|
rescale_factor=rescale_factor,
|
|
do_normalize=do_normalize,
|
|
image_mean=image_mean,
|
|
image_std=image_std,
|
|
do_resize=do_resize,
|
|
size=size,
|
|
resample=resample,
|
|
)
|
|
# PIL RGBA images are converted to RGB
|
|
if do_convert_rgb:
|
|
images = [convert_to_rgb(image) for image in images]
|
|
|
|
# All transformations expect numpy arrays.
|
|
images = [to_numpy_array(image) for image in images]
|
|
|
|
if do_rescale and is_scaled_image(images[0]):
|
|
logger.warning_once(
|
|
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
)
|
|
|
|
if input_data_format is None:
|
|
# We assume that all images have the same channel dimension format.
|
|
input_data_format = infer_channel_dimension_format(images[0])
|
|
|
|
if do_resize:
|
|
images = [
|
|
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
if do_rescale:
|
|
images = [
|
|
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
if do_normalize:
|
|
images = [
|
|
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
images = [
|
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
|
]
|
|
|
|
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
|
|
|
return encoded_outputs
|
|
|
|
def new_image_processing_method(self, pixel_values: torch.FloatTensor):
|
|
return pixel_values / 2
|