mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
202 lines
7.1 KiB
Python
202 lines
7.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Dataloaders to train DistilBERT
|
|
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
|
|
"""
|
|
from typing import List
|
|
import math
|
|
from itertools import chain
|
|
from collections import Counter
|
|
import numpy as np
|
|
import torch
|
|
|
|
from utils import logger
|
|
|
|
class Dataset:
|
|
def __init__(self,
|
|
params,
|
|
data):
|
|
self.params = params
|
|
self.tokens_per_batch = params.tokens_per_batch
|
|
self.batch_size = params.batch_size
|
|
self.shuffle = params.shuffle
|
|
self.group_by_size = params.group_by_size
|
|
|
|
self.token_ids = np.array(data)
|
|
self.lengths = np.uint16([len(t) for t in data])
|
|
|
|
self.check()
|
|
self.remove_long_sequences()
|
|
self.remove_empty_sequences()
|
|
self.check()
|
|
self.print_statistics()
|
|
|
|
def __len__(self):
|
|
return len(self.lengths)
|
|
|
|
def check(self):
|
|
"""
|
|
Some sanity checks
|
|
"""
|
|
assert len(self.token_ids) == len(self.lengths)
|
|
|
|
def remove_long_sequences(self):
|
|
"""
|
|
Sequences that are too long are splitted by chunk of max_position_embeddings.
|
|
"""
|
|
indices = self.lengths >= self.params.max_position_embeddings
|
|
logger.info(f'Splitting {sum(indices)} too long sequences.')
|
|
|
|
def divide_chunks(l, n):
|
|
return [l[i:i + n] for i in range(0, len(l), n)]
|
|
|
|
new_tok_ids = []
|
|
new_lengths = []
|
|
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
|
|
max_len = self.params.max_position_embeddings
|
|
|
|
for seq_, len_ in zip(self.token_ids, self.lengths):
|
|
if len_ <= max_len:
|
|
new_tok_ids.append(seq_)
|
|
new_lengths.append(len_)
|
|
else:
|
|
sub_seqs = []
|
|
for sub_s in divide_chunks(seq_, max_len-2):
|
|
if sub_s[0] != cls_id:
|
|
sub_s = np.insert(sub_s, 0, cls_id)
|
|
if sub_s[-1] != sep_id:
|
|
sub_s = np.insert(sub_s, len(sub_s), cls_id)
|
|
assert len(sub_s) <= max_len
|
|
sub_seqs.append(sub_s)
|
|
|
|
new_tok_ids.extend(sub_seqs)
|
|
new_lengths.extend([len(l) for l in sub_seqs])
|
|
|
|
self.token_ids = np.array(new_tok_ids)
|
|
self.lengths = np.array(new_lengths)
|
|
|
|
def remove_empty_sequences(self):
|
|
"""
|
|
Too short sequences are simply removed. This could be tunedd.
|
|
"""
|
|
init_size = len(self)
|
|
indices = self.lengths > 5
|
|
self.token_ids = self.token_ids[indices]
|
|
self.lengths = self.lengths[indices]
|
|
new_size = len(self)
|
|
logger.info(f'Remove {init_size - new_size} too short (<=5 tokens) sequences.')
|
|
|
|
def print_statistics(self):
|
|
"""
|
|
Print some statistics on the corpus. Only the master process.
|
|
"""
|
|
if not self.params.is_master:
|
|
return
|
|
logger.info(f'{len(self)} sequences')
|
|
# data_len = sum(self.lengths)
|
|
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
|
|
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
|
|
|
|
# unk_idx = self.params.special_tok_ids['unk_token']
|
|
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
|
|
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
|
|
|
|
def select_data(self, a: int, b: int):
|
|
"""
|
|
Select a subportion of the data.
|
|
"""
|
|
n_sequences = len(self)
|
|
assert 0 <= a < b <= n_sequences, ValueError(f'`0 <= a < b <= n_sequences` is not met with a={a} and b={b}')
|
|
|
|
logger.info(f'Selecting sequences from {a} to {b} (excluded).')
|
|
self.token_ids = self.token_ids[a:b]
|
|
self.lengths = self.lengths[a:b]
|
|
|
|
self.check()
|
|
|
|
def split(self):
|
|
"""
|
|
Distributed training: split the data accross the processes.
|
|
"""
|
|
assert self.params.n_gpu > 1
|
|
logger.info('Splitting the data accross the processuses.')
|
|
n_seq = len(self)
|
|
n_seq_per_procesus = n_seq // self.params.world_size
|
|
a = n_seq_per_procesus * self.params.global_rank
|
|
b = a + n_seq_per_procesus
|
|
self.select_data(a=a, b=b)
|
|
|
|
def batch_sequences(self,
|
|
token_ids: List[List[int]],
|
|
lengths: List[int]):
|
|
"""
|
|
Do the padding and transform into torch.tensor.
|
|
"""
|
|
assert len(token_ids) == len(lengths)
|
|
|
|
# Max for paddings
|
|
max_seq_len_ = max(lengths)
|
|
|
|
# Pad token ids
|
|
pad_idx = self.params.special_tok_ids['pad_token']
|
|
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
|
|
assert len(tk_) == len(token_ids)
|
|
assert all(len(t) == max_seq_len_ for t in tk_)
|
|
|
|
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
|
|
lg_t = torch.tensor(lengths.astype(int)) # (bs)
|
|
return tk_t, lg_t
|
|
|
|
def get_batches_iterator(self,
|
|
batches):
|
|
"""
|
|
Return an iterator over batches.
|
|
"""
|
|
for sequences_ids in batches:
|
|
token_ids, lengths = self.batch_sequences(self.token_ids[sequences_ids],
|
|
self.lengths[sequences_ids])
|
|
yield (token_ids, lengths)
|
|
|
|
def get_iterator(self,
|
|
seed: int = None):
|
|
"""
|
|
Return a data iterator.
|
|
"""
|
|
rng = np.random.RandomState(seed)
|
|
|
|
n_sequences = len(self)
|
|
indices = np.arange(n_sequences)
|
|
|
|
if self.group_by_size:
|
|
indices = indices[np.argsort(self.lengths[indices], kind='mergesort')]
|
|
|
|
if self.tokens_per_batch == -1:
|
|
batches = np.array_split(indices, math.ceil(len(indices) * 1. / self.batch_size))
|
|
else:
|
|
assert self.tokens_per_batch > 0
|
|
batch_ids = np.cumsum(self.lengths[indices]) // self.tokens_per_batch
|
|
_, bounds = np.unique(batch_ids, return_index=True)
|
|
batches = [indices[bounds[i]:bounds[i + 1]] for i in range(len(bounds) - 1)]
|
|
if bounds[-1] < len(indices):
|
|
batches.append(indices[bounds[-1]:])
|
|
|
|
if self.shuffle:
|
|
rng.shuffle(batches)
|
|
|
|
assert n_sequences == sum([len(x) for x in batches])
|
|
assert self.lengths[indices].sum() == sum([self.lengths[x].sum() for x in batches])
|
|
|
|
return self.get_batches_iterator(batches=batches)
|