mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* feature for tokenizer without slow/legacy version * format * modify common test * add tests * add PreTrainedTokenizerFast to AutoTokenizer * format * change tokenizer common test in order to be able to run test without a slow version * update tokenizer fast test in order to use `rust_tokenizer_class` attribute instead of `tokenizer_class` * add autokenizer test * replace `if self.tokenizer_class is not None` with ` if self.tokenizer_class is None` * remove obsolete change in comment * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/tokenization_utils_fast.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * change `get_main_tokenizer` into `get_tokenizers` * clarify `get_tokenizers` method * homogenize with `test_slow_tokenizer` and `test_rust_tokenizer` * add `test_rust_tokenizer = False` to tokenizer which don't define a fast version * `test_rust_tokenizer = False` for BertJapaneseTokenizer * `test_rust_tokenizer = False` for BertJapaneseCharacterTokenizationTest Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
209 lines
8.9 KiB
Python
209 lines
8.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import CLIPTokenizer, CLIPTokenizerFast
|
|
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_tokenizers
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
@require_tokenizers
|
|
class CLIPTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
|
|
tokenizer_class = CLIPTokenizer
|
|
rust_tokenizer_class = CLIPTokenizerFast
|
|
test_rust_tokenizer = False
|
|
from_pretrained_kwargs = {"add_prefix_space": True}
|
|
test_seq2seq = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# fmt: off
|
|
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|endoftext|>"]
|
|
# fmt: on
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer "
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
|
text = "lower newer"
|
|
bpe_tokens = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
|
|
tokens = tokenizer.tokenize(text, add_prefix_space=True)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [10, 2, 12, 9, 3, 2, 12, 16]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
|
|
sequence = "lower newer"
|
|
|
|
# Testing tokenization
|
|
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
# Testing conversion to ids without special tokens
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing conversion to ids with special tokens
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
ids = tokenizer.encode(sequence, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing the unknown token
|
|
input_tokens = tokens + [rust_tokenizer.unk_token]
|
|
input_bpe_tokens = [10, 2, 12, 9, 3, 2, 12, 16]
|
|
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_pretokenized_inputs(self, *args, **kwargs):
|
|
# It's very difficult to mix/test pretokenization with byte-level
|
|
# And get both CLIP and Roberta to work at the same time (mostly an issue of adding a space before the string)
|
|
pass
|
|
|
|
def test_padding(self, max_length=15):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
]
|
|
|
|
# Simple input tests
|
|
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
s2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
p2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
def test_add_tokens_tokenizer(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
vocab_size = tokenizer.vocab_size
|
|
all_size = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size, 0)
|
|
|
|
# We usually have added tokens from the start in tests because our vocab fixtures are
|
|
# smaller than the original vocabs - let's not assert this
|
|
# self.assertEqual(vocab_size, all_size)
|
|
|
|
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
|
|
added_toks = tokenizer.add_tokens(new_toks)
|
|
vocab_size_2 = tokenizer.vocab_size
|
|
all_size_2 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_2, 0)
|
|
self.assertEqual(vocab_size, vocab_size_2)
|
|
self.assertEqual(added_toks, len(new_toks))
|
|
self.assertEqual(all_size_2, all_size + len(new_toks))
|
|
|
|
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
|
|
|
|
self.assertGreaterEqual(len(tokens), 4)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
|
|
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
|
|
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
|
|
vocab_size_3 = tokenizer.vocab_size
|
|
all_size_3 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_3, 0)
|
|
self.assertEqual(vocab_size, vocab_size_3)
|
|
self.assertEqual(added_toks_2, len(new_toks_2))
|
|
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
|
|
|
|
tokens = tokenizer.encode(
|
|
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
|
|
)
|
|
|
|
self.assertGreaterEqual(len(tokens), 6)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[0], tokens[1])
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokens[-3])
|
|
self.assertEqual(tokens[0], tokenizer.eos_token_id)
|
|
# padding is very hacky in CLIPTokenizer, pad_token_id is always 0
|
|
# so skip this check
|
|
# self.assertEqual(tokens[-2], tokenizer.pad_token_id)
|