mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Add API to register a new object in auto classes * Fix test * Documentation * Add to tokenizers and test * Add cleanup after tests * Be more careful * Move import * Move import * Cleanup in TF test too * Add consistency check * Add documentation * Style * Update docs/source/model_doc/auto.rst Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/auto/auto_factory.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
310 lines
14 KiB
Python
310 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import (
|
|
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
AutoTokenizer,
|
|
BertConfig,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
CTRLTokenizer,
|
|
GPT2Tokenizer,
|
|
GPT2TokenizerFast,
|
|
PretrainedConfig,
|
|
PreTrainedTokenizerFast,
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
is_tokenizers_available,
|
|
)
|
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
|
|
from transformers.models.auto.tokenization_auto import (
|
|
TOKENIZER_MAPPING,
|
|
get_tokenizer_config,
|
|
tokenizer_class_from_name,
|
|
)
|
|
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
|
from transformers.testing_utils import (
|
|
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
|
|
DUMMY_UNKNOWN_IDENTIFIER,
|
|
SMALL_MODEL_IDENTIFIER,
|
|
require_tokenizers,
|
|
slow,
|
|
)
|
|
|
|
|
|
class NewConfig(PretrainedConfig):
|
|
model_type = "new-model"
|
|
|
|
|
|
class NewTokenizer(BertTokenizer):
|
|
pass
|
|
|
|
|
|
if is_tokenizers_available():
|
|
|
|
class NewTokenizerFast(BertTokenizerFast):
|
|
slow_tokenizer_class = NewTokenizer
|
|
pass
|
|
|
|
|
|
class AutoTokenizerTest(unittest.TestCase):
|
|
@slow
|
|
def test_tokenizer_from_pretrained(self):
|
|
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
def test_tokenizer_from_pretrained_identifier(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_model_type(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 20)
|
|
|
|
def test_tokenizer_from_tokenizer_class(self):
|
|
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
|
|
self.assertIsInstance(config, RobertaConfig)
|
|
# Check that tokenizer_type ≠ model_type
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_type(self):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False)
|
|
self.assertIsInstance(tokenizer, BertTokenizer)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
|
|
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False)
|
|
self.assertIsInstance(tokenizer, GPT2Tokenizer)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_from_type_fast(self):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert")
|
|
self.assertIsInstance(tokenizer, BertTokenizerFast)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
|
|
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2")
|
|
self.assertIsInstance(tokenizer, GPT2TokenizerFast)
|
|
|
|
def test_tokenizer_from_type_incorrect_name(self):
|
|
with pytest.raises(ValueError):
|
|
AutoTokenizer.from_pretrained("./", tokenizer_type="xxx")
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_with_correct_config(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
if isinstance(tokenizer, BertTokenizer):
|
|
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
|
|
else:
|
|
self.assertEqual(tokenizer.do_lower_case, False)
|
|
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_non_existent(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
with self.assertRaises(EnvironmentError):
|
|
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
|
|
|
|
def test_parents_and_children_in_mappings(self):
|
|
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
|
|
# by the parents and will return the wrong configuration type when using auto models
|
|
|
|
mappings = (TOKENIZER_MAPPING,)
|
|
|
|
for mapping in mappings:
|
|
mapping = tuple(mapping.items())
|
|
for index, (child_config, _) in enumerate(mapping[1:]):
|
|
for parent_config, _ in mapping[: index + 1]:
|
|
with self.subTest(msg=f"Testing if {child_config.__name__} is child of {parent_config.__name__}"):
|
|
self.assertFalse(issubclass(child_config, parent_config))
|
|
|
|
def test_model_name_edge_cases_in_mappings(self):
|
|
# tests: https://github.com/huggingface/transformers/pull/13251
|
|
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
|
|
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
|
|
tokenizers = TOKENIZER_MAPPING.values()
|
|
tokenizer_names = []
|
|
|
|
for slow_tok, fast_tok in tokenizers:
|
|
if slow_tok is not None:
|
|
tokenizer_names.append(slow_tok.__name__)
|
|
|
|
if fast_tok is not None:
|
|
tokenizer_names.append(fast_tok.__name__)
|
|
|
|
for tokenizer_name in tokenizer_names:
|
|
# must find the right class
|
|
tokenizer_class_from_name(tokenizer_name)
|
|
|
|
@require_tokenizers
|
|
def test_from_pretrained_use_fast_toggle(self):
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)
|
|
|
|
@require_tokenizers
|
|
def test_do_lower_case(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False)
|
|
sample = "Hello, world. How are you?"
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False)
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
@require_tokenizers
|
|
def test_PreTrainedTokenizerFast_from_pretrained(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config")
|
|
self.assertEqual(type(tokenizer), PreTrainedTokenizerFast)
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
self.assertEqual(tokenizer.vocab_size, 30000)
|
|
self.assertEqual(tokenizer.unk_token, "[UNK]")
|
|
self.assertEqual(tokenizer.padding_side, "right")
|
|
|
|
def test_auto_tokenizer_from_local_folder(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir)
|
|
|
|
self.assertIsInstance(tokenizer2, tokenizer.__class__)
|
|
self.assertEqual(tokenizer2.vocab_size, 12)
|
|
|
|
def test_auto_tokenizer_fast_no_slow(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("ctrl")
|
|
# There is no fast CTRL so this always gives us a slow tokenizer.
|
|
self.assertIsInstance(tokenizer, CTRLTokenizer)
|
|
|
|
def test_get_tokenizer_config(self):
|
|
# Check we can load the tokenizer config of an online model.
|
|
config = get_tokenizer_config("bert-base-cased")
|
|
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
|
|
self.assertEqual(config, {"do_lower_case": False})
|
|
|
|
# This model does not have a tokenizer_config so we get back an empty dict.
|
|
config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER)
|
|
self.assertDictEqual(config, {})
|
|
|
|
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
config = get_tokenizer_config(tmp_dir)
|
|
|
|
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
|
|
self.assertEqual(config["tokenizer_class"], "BertTokenizer")
|
|
# Check other keys just to make sure the config was properly saved /reloaded.
|
|
self.assertEqual(config["name_or_path"], SMALL_MODEL_IDENTIFIER)
|
|
|
|
def test_new_tokenizer_registration(self):
|
|
try:
|
|
AutoConfig.register("new-model", NewConfig)
|
|
|
|
AutoTokenizer.register(NewConfig, slow_tokenizer_class=NewTokenizer)
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer)
|
|
|
|
tokenizer = NewTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_tokenizer, NewTokenizer)
|
|
|
|
finally:
|
|
if "new-model" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["new-model"]
|
|
if NewConfig in TOKENIZER_MAPPING._extra_content:
|
|
del TOKENIZER_MAPPING._extra_content[NewConfig]
|
|
|
|
@require_tokenizers
|
|
def test_new_tokenizer_fast_registration(self):
|
|
try:
|
|
AutoConfig.register("new-model", NewConfig)
|
|
|
|
# Can register in two steps
|
|
AutoTokenizer.register(NewConfig, slow_tokenizer_class=NewTokenizer)
|
|
self.assertEqual(TOKENIZER_MAPPING[NewConfig], (NewTokenizer, None))
|
|
AutoTokenizer.register(NewConfig, fast_tokenizer_class=NewTokenizerFast)
|
|
self.assertEqual(TOKENIZER_MAPPING[NewConfig], (NewTokenizer, NewTokenizerFast))
|
|
|
|
del TOKENIZER_MAPPING._extra_content[NewConfig]
|
|
# Can register in one step
|
|
AutoTokenizer.register(NewConfig, slow_tokenizer_class=NewTokenizer, fast_tokenizer_class=NewTokenizerFast)
|
|
self.assertEqual(TOKENIZER_MAPPING[NewConfig], (NewTokenizer, NewTokenizerFast))
|
|
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast)
|
|
|
|
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
|
|
# and that model does not have a tokenizer.json
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
bert_tokenizer.save_pretrained(tmp_dir)
|
|
tokenizer = NewTokenizerFast.from_pretrained(tmp_dir)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer.save_pretrained(tmp_dir)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_tokenizer, NewTokenizerFast)
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False)
|
|
self.assertIsInstance(new_tokenizer, NewTokenizer)
|
|
|
|
finally:
|
|
if "new-model" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["new-model"]
|
|
if NewConfig in TOKENIZER_MAPPING._extra_content:
|
|
del TOKENIZER_MAPPING._extra_content[NewConfig]
|