mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 13:50:13 +06:00

* init vision_text_dual_encoder * fix merge * remove extra heads * fix tests * remove VISION_TEXT_DUAL_ENCODER_PRETRAINED_CONFIG_ARCHIVE_MAP * remove archive map * fix imports * fix more imports * fix init * delete tokenizers * fix imports * clean * support clip's vision model * handle None config * begin tests * more test and few fixes * warn about newly init weights * more tests * add loss to model * remove extra classes from doc * add processor * doc and small fixes * add start docstr * update flax model * flax tests * more flax tests * doc * quality * doc and quality * fix doc * doc * remove comments * update warning * quality * fix docs * Apply suggestions from code review Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * replace asserts, fix imports * update imports * fix import * address some review comments * fix check * reduce tolerance * fix test * add flax integration test * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * address Sylvain's comments * fix style * add pt_flax_equivalence test in PT tests * add pt integration test * update test * use pre-trained checkpoint in examples Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
171 lines
6.7 KiB
Python
171 lines
6.7 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import BertTokenizerFast
|
|
from transformers.file_utils import FEATURE_EXTRACTOR_NAME, is_vision_available
|
|
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
|
|
from transformers.testing_utils import require_tokenizers, require_vision
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import VisionTextDualEncoderProcessor, ViTFeatureExtractor
|
|
|
|
|
|
@require_tokenizers
|
|
@require_vision
|
|
class VisionTextDualEncoderProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
# fmt: off
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
|
|
# fmt: on
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
|
|
|
feature_extractor_map = {
|
|
"do_resize": True,
|
|
"size": 18,
|
|
"do_normalize": True,
|
|
"image_mean": [0.5, 0.5, 0.5],
|
|
"image_std": [0.5, 0.5, 0.5],
|
|
}
|
|
self.feature_extractor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
|
|
with open(self.feature_extractor_file, "w", encoding="utf-8") as fp:
|
|
json.dump(feature_extractor_map, fp)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return ViTFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = VisionTextDualEncoderProcessor(
|
|
tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = VisionTextDualEncoderProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = feature_extractor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
|
|
|
|
# test if it raises when no input is passed
|
|
with self.assertRaises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|