mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* begin second draft * fix import, style * add loss * fix embeds, logits_scale, and projection * fix imports * add conversion script * add feature_extractor and processor * style * add tests for tokenizer, extractor and processor * add vision model tests * add weight init * add more tests * fix save_load test * model output, dosstrings, causal mask * config doc * add clip model tests * return dict * bigin integration test * add integration tests * fix-copies * fix init * Clip => CLIP * fix module name * docs * fix doc * output_dim => projection_dim * fix checkpoint names * remoe fast tokenizer file * fix conversion script * fix tests, quality * put causal mask on device * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fix attribute test * style * address sylvains comments * style * fix docstrings * add qucik_gelu in activations, docstrings * clean-up attention test * fix act fun * fix config * fix torchscript tests * even batch_size * remove comment * fix ouput tu_tuple * fix save load tests * fix add tokens test * add fast tokenizer * update copyright * new processor API * fix docs * docstrings * docs * fix doc * fix doc * fix tokenizer * fix import in doc example * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * check types of config * valhalla => openai * load image using url * fix test * typo Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
178 lines
6.9 KiB
Python
178 lines
6.9 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import CLIPTokenizer
|
|
from transformers.file_utils import FEATURE_EXTRACTOR_NAME, is_vision_available
|
|
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_vision
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import CLIPFeatureExtractor, CLIPProcessor
|
|
|
|
|
|
@require_vision
|
|
class CLIPProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
# fmt: off
|
|
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|endoftext|>"]
|
|
# fmt: on
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
feature_extractor_map = {
|
|
"do_resize": True,
|
|
"size": 20,
|
|
"do_center_crop": True,
|
|
"crop_size": 18,
|
|
"do_normalize": True,
|
|
"image_mean": [0.48145466, 0.4578275, 0.40821073],
|
|
"image_std": [0.26862954, 0.26130258, 0.27577711],
|
|
}
|
|
self.feature_extractor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
|
|
with open(self.feature_extractor_file, "w", encoding="utf-8") as fp:
|
|
json.dump(feature_extractor_map, fp)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return CLIPFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = CLIPProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, CLIPTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = CLIPProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = CLIPProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, CLIPTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = feature_extractor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|