mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Tentative enabling of `batch_size` for pipelines. * Add systematic test for pipeline batching. * Enabling batch_size on almost all pipelines - Not `zero-shot` (it's already passing stuff as batched so trickier) - Not `QA` (preprocess uses squad features, we need to switch to real tensors at this boundary. * Adding `min_length_for_response` for conversational. * Making CTC, speech mappings avaiable regardless of framework. * Attempt at fixing automatic tests (ffmpeg not enabled for fast tests) * Removing ffmpeg dependency in tests. * Small fixes. * Slight cleanup. * Adding docs and adressing comments. * Quality. * Update docs/source/main_classes/pipelines.rst Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/question_answering.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/zero_shot_classification.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Improving docs. * Update docs/source/main_classes/pipelines.rst Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com> * N -> oberved_batch_size softmax trick. * Follow `padding_side`. * Supporting image pipeline batching (and padding). * Rename `unbatch` -> `loader_batch`. * unbatch_size forgot. * Custom padding for offset mappings. * Attempt to remove librosa. * Adding require_audio. * torchaudio. * Back to using datasets librosa. * Adding help to set a pad_token on the tokenizer. * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Quality. Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
159 lines
6.5 KiB
Python
159 lines
6.5 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import (
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
MBart50TokenizerFast,
|
|
MBartConfig,
|
|
MBartForConditionalGeneration,
|
|
TranslationPipeline,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow
|
|
|
|
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
|
|
|
|
|
@is_pipeline_test
|
|
class TranslationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
|
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, feature_extractor):
|
|
if isinstance(model.config, MBartConfig):
|
|
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2]
|
|
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang)
|
|
else:
|
|
translator = TranslationPipeline(model=model, tokenizer=tokenizer)
|
|
return translator, ["Some string", "Some other text"]
|
|
|
|
def run_pipeline_test(self, translator, _):
|
|
outputs = translator("Some string")
|
|
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt")
|
|
outputs = translator("This is a test string", max_length=20)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"translation_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
|
|
}
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf")
|
|
outputs = translator("This is a test string", max_length=20)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"translation_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
|
|
}
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_en_to_de_pt(self):
|
|
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt")
|
|
outputs = translator("This is a test string", max_length=20)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"translation_text": "monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine urine urine urine urine urine urine urine"
|
|
}
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_en_to_de_tf(self):
|
|
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf")
|
|
outputs = translator("This is a test string", max_length=20)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"translation_text": "monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine urine urine urine urine urine urine urine"
|
|
}
|
|
],
|
|
)
|
|
|
|
|
|
@is_pipeline_test
|
|
class TranslationNewFormatPipelineTests(unittest.TestCase):
|
|
@require_torch
|
|
@slow
|
|
def test_default_translations(self):
|
|
# We don't provide a default for this pair
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="translation_cn_to_ar")
|
|
|
|
# but we do for this one
|
|
translator = pipeline(task="translation_en_to_de")
|
|
self.assertEqual(translator._preprocess_params["src_lang"], "en")
|
|
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_multilingual_translation(self):
|
|
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
|
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
|
|
|
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
|
|
# Missing src_lang, tgt_lang
|
|
with self.assertRaises(ValueError):
|
|
translator("This is a test")
|
|
|
|
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
|
|
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
|
|
|
|
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
|
|
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
|
|
|
|
# src_lang, tgt_lang can be defined at pipeline call time
|
|
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
|
|
outputs = translator("This is a test")
|
|
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
|
|
|
|
@require_torch
|
|
def test_translation_on_odd_language(self):
|
|
model = "patrickvonplaten/t5-tiny-random"
|
|
translator = pipeline(task="translation_cn_to_ar", model=model)
|
|
self.assertEqual(translator._preprocess_params["src_lang"], "cn")
|
|
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar")
|
|
|
|
@require_torch
|
|
def test_translation_default_language_selection(self):
|
|
model = "patrickvonplaten/t5-tiny-random"
|
|
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
|
|
translator = pipeline(task="translation", model=model)
|
|
self.assertEqual(translator.task, "translation_en_to_de")
|
|
self.assertEqual(translator._preprocess_params["src_lang"], "en")
|
|
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
|
|
|
|
@require_torch
|
|
def test_translation_with_no_language_no_model_fails(self):
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="translation")
|