mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Adding `handle_long_generation` paramters for `text-generation` pipeline. * More error handling * Fixing tests by dropping tf support on this functionality, it needs `max_new_tokens` to make it possible to understand user's intent. Otherwise, `max_length` == `tokenizer.model_max_length` < input_ids.shape[0]. * Fixing doc ? * Doc ? * Remove link from doc. * Catched an issue on roberta. * Damn doc. * Non BC proposal ? * Cleaning the fix ? * Finally using only a test override. * Don't need to modify this. * Bad print.
147 lines
6.2 KiB
Python
147 lines
6.2 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
|
|
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
|
|
|
|
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
|
|
|
|
|
@is_pipeline_test
|
|
class TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
|
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
|
|
# Using `do_sample=False` to force deterministic output
|
|
outputs = text_generator("This is a test", do_sample=False)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
|
}
|
|
],
|
|
)
|
|
|
|
outputs = text_generator(["This is a test", "This is a second test"])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{
|
|
"generated_text": "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
|
}
|
|
],
|
|
[
|
|
{
|
|
"generated_text": "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope. oscope. FiliFili@@"
|
|
}
|
|
],
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
|
|
|
|
# Using `do_sample=False` to force deterministic output
|
|
outputs = text_generator("This is a test", do_sample=False)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
|
}
|
|
],
|
|
)
|
|
|
|
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{
|
|
"generated_text": "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
|
}
|
|
],
|
|
[
|
|
{
|
|
"generated_text": "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵 please,"
|
|
}
|
|
],
|
|
],
|
|
)
|
|
|
|
def get_test_pipeline(self, model, tokenizer, feature_extractor):
|
|
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
|
|
return text_generator, ["This is a test", "Another test"]
|
|
|
|
def run_pipeline_test(self, text_generator, _):
|
|
model = text_generator.model
|
|
tokenizer = text_generator.tokenizer
|
|
|
|
outputs = text_generator("This is a test")
|
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
|
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
|
|
|
|
outputs = text_generator("This is a test", return_full_text=False)
|
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
|
self.assertNotIn("This is a test", outputs[0]["generated_text"])
|
|
|
|
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
|
|
outputs = text_generator("This is a test")
|
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
|
self.assertNotIn("This is a test", outputs[0]["generated_text"])
|
|
|
|
outputs = text_generator("This is a test", return_full_text=True)
|
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
|
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
|
|
|
|
# Empty prompt is slighly special
|
|
# it requires BOS token to exist.
|
|
# Special case for Pegasus which will always append EOS so will
|
|
# work even without BOS.
|
|
if text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__:
|
|
outputs = text_generator("")
|
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
|
|
else:
|
|
with self.assertRaises((ValueError, AssertionError)):
|
|
outputs = text_generator("")
|
|
|
|
if text_generator.framework == "tf":
|
|
# TF generation does not support max_new_tokens, and it's impossible
|
|
# to control long generation with only max_length without
|
|
# fancy calculation, dismissing tests for now.
|
|
return
|
|
# We don't care about infinite range models.
|
|
# They already work.
|
|
if tokenizer.model_max_length < 10000:
|
|
# Handling of large generations
|
|
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
|
|
text_generator("This is a test" * 500, max_new_tokens=20)
|
|
|
|
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
|
|
# Hole strategy cannot work
|
|
with self.assertRaises(ValueError):
|
|
text_generator(
|
|
"This is a test" * 500,
|
|
handle_long_generation="hole",
|
|
max_new_tokens=tokenizer.model_max_length + 10,
|
|
)
|