transformers/tests/test_pipelines_automatic_speech_recognition.py
Patrick von Platen 700a748fe6
[Wav2Vec2] Add New Wav2Vec2 Translation (#14392)
* add new wav2vec2 translation

* correct

* up

* add tests

* correct end copy

* correct more

* up

* correct unispeech sat

* finish

* finalize

* finish

* up
2021-11-17 14:38:56 +01:00

244 lines
8.7 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pytest
from transformers import (
MODEL_FOR_CTC_MAPPING,
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
AutoFeatureExtractor,
AutoTokenizer,
Speech2TextForConditionalGeneration,
Wav2Vec2ForCTC,
)
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_datasets,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
# We can't use this mixin because it assumes TF support.
# from .test_pipelines_common import CustomInputPipelineCommonMixin
@is_pipeline_test
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = {
k: v
for k, v in (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
}
def get_test_pipeline(self, model, tokenizer, feature_extractor):
if tokenizer is None:
# Side effect of no Fast Tokenizer class for these model, so skipping
# But the slow tokenizer test should still run as they're quite small
self.skipTest("No tokenizer available")
return
# return None, None
speech_recognizer = AutomaticSpeechRecognitionPipeline(
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
)
# test with a raw waveform
audio = np.zeros((34000,))
audio2 = np.zeros((14000,))
return speech_recognizer, [audio, audio2]
def run_pipeline_test(self, speech_recognizer, examples):
audio = np.zeros((34000,))
outputs = speech_recognizer(audio)
self.assertEqual(outputs, {"text": ANY(str)})
@require_torch
@slow
def test_pt_defaults(self):
pipeline("automatic-speech-recognition", framework="pt")
@require_torch
def test_small_model_pt(self):
import numpy as np
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-small-mustc-en-fr-st",
tokenizer="facebook/s2t-small-mustc-en-fr-st",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": "(Applaudissements)"})
@require_tf
def test_small_model_tf(self):
self.skipTest("Tensorflow not supported yet.")
@require_torch
def test_torch_small_no_tokenizer_files(self):
# test that model without tokenizer file cannot be loaded
with pytest.raises(OSError):
pipeline(
task="automatic-speech-recognition",
model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
framework="pt",
)
@require_datasets
@require_torch
@slow
def test_torch_large(self):
import numpy as np
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-base-960h",
tokenizer="facebook/wav2vec2-base-960h",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": ""})
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@require_datasets
@require_torch
@slow
def test_torch_speech_encoder_decoder(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-wav2vec2-large-en-de",
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
framework="pt",
)
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
@slow
@require_torch
@require_datasets
def test_simple_wav2vec2(self):
import numpy as np
from datasets import load_dataset
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = asr(waveform)
self.assertEqual(output, {"text": ""})
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
filename = ds[40]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@slow
@require_torch
@require_torchaudio
@require_datasets
def test_simple_s2t(self):
import numpy as np
from datasets import load_dataset
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = asr(waveform)
self.assertEqual(output, {"text": "(Applausi)"})
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
filename = ds[40]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
@slow
@require_torch
@require_torchaudio
@require_datasets
def test_xls_r_to_en(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-xls-r-1b-21-to-en",
feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
framework="pt",
)
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})
@slow
@require_torch
@require_torchaudio
@require_datasets
def test_xls_r_from_en(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-xls-r-1b-en-to-15",
feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
framework="pt",
)
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})