mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* Add cross attentions to TFGPT2Model * Add TFEncoderDecoderModel * Add TFBaseModelOutputWithPoolingAndCrossAttentions * Add cross attentions to TFBertModel * Fix past or past_key_values argument issue * Fix generation * Fix save and load * Add some checks and comments * Clean the code that deals with past keys/values * Add kwargs to processing_inputs * Add serving_output to TFEncoderDecoderModel * Some cleaning + fix use_cache value issue * Fix tests + add bert2bert/bert2gpt2 tests * Fix more tests * Ignore crossattention.bias when loading GPT2 weights into TFGPT2 * Fix return_dict_in_generate in tf generation * Fix is_token_logit_eos_token bug in tf generation * Finalize the tests after fixing some bugs * Fix another is_token_logit_eos_token bug in tf generation * Add/Update docs * Add TFBertEncoderDecoderModelTest * Clean test script * Add TFEncoderDecoderModel to the library * Add cross attentions to TFRobertaModel * Add TFRobertaEncoderDecoderModelTest * make style * Change the way of position_ids computation * bug fix * Fix copies in tf_albert * Remove some copied from and apply some fix-copies * Remove some copied * Add cross attentions to some other TF models * Remove encoder_hidden_states from TFLayoutLMModel.call for now * Make style * Fix TFRemBertForCausalLM * Revert the change to longformer + Remove copies * Revert the change to albert and convbert + Remove copies * make quality * make style * Add TFRembertEncoderDecoderModelTest * make quality and fix-copies * test TFRobertaForCausalLM * Fixes for failed tests * Fixes for failed tests * fix more tests * Fixes for failed tests * Fix Auto mapping order * Fix TFRemBertEncoder return value * fix tf_rembert * Check copies are OK * Fix missing TFBaseModelOutputWithPastAndCrossAttentions is not defined * Add TFEncoderDecoderModelSaveLoadTests * fix tf weight loading * check the change of use_cache * Revert the change * Add missing test_for_causal_lm for TFRobertaModelTest * Try cleaning past * fix _reorder_cache * Revert some files to original versions * Keep as many copies as possible * Apply suggested changes - Use raise ValueError instead of assert * Move import to top * Fix wrong require_torch * Replace more assert by raise ValueError * Add test_pt_tf_model_equivalence (the test won't pass for now) * add test for loading/saving * finish * finish * Remove test_pt_tf_model_equivalence * Update tf modeling template * Remove pooling, added in the prev. commit, from MainLayer * Update tf modeling test template * Move inputs["use_cache"] = False to modeling_tf_utils.py * Fix torch.Tensor in the comment * fix use_cache * Fix missing use_cache in ElectraConfig * Add a note to from_pretrained * Fix style * Change test_encoder_decoder_save_load_from_encoder_decoder_from_pt * Fix TFMLP (in TFGPT2) activation issue * Fix None past_key_values value in serving_output * Don't call get_encoderdecoder_model in TFEncoderDecoderModelTest.test_configuration_tie until we have a TF checkpoint on Hub * Apply review suggestions - style for cross_attns in serving_output * Apply review suggestions - change assert + docstrings * break the error message to respect the char limit * deprecate the argument past * fix docstring style * Update the encoder-decoder rst file * fix Unknown interpreted text role "method" * fix typo Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
305 lines
12 KiB
Python
305 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import RobertaConfig, is_tf_available
|
|
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_tf_available():
|
|
import numpy
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.roberta.modeling_tf_roberta import (
|
|
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFRobertaForCausalLM,
|
|
TFRobertaForMaskedLM,
|
|
TFRobertaForMultipleChoice,
|
|
TFRobertaForQuestionAnswering,
|
|
TFRobertaForSequenceClassification,
|
|
TFRobertaForTokenClassification,
|
|
TFRobertaModel,
|
|
)
|
|
|
|
|
|
class TFRobertaModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_mask = True
|
|
self.use_token_type_ids = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 5
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = RobertaConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
config.is_decoder = True
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def create_and_check_roberta_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFRobertaModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_roberta_for_causal_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFRobertaForCausalLM(config=config)
|
|
result = model([input_ids, input_mask, token_type_ids])
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_roberta_for_masked_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFRobertaForMaskedLM(config=config)
|
|
result = model([input_ids, input_mask, token_type_ids])
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_roberta_for_token_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFRobertaForTokenClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_roberta_for_question_answering(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFRobertaForQuestionAnswering(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_roberta_for_multiple_choice(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFRobertaForMultipleChoice(config=config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (
|
|
(
|
|
TFRobertaModel,
|
|
TFRobertaForCausalLM,
|
|
TFRobertaForMaskedLM,
|
|
TFRobertaForSequenceClassification,
|
|
TFRobertaForTokenClassification,
|
|
TFRobertaForQuestionAnswering,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFRobertaModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_roberta_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_causal_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_causal_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_roberta_for_multiple_choice(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TFRobertaModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
@require_tf
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TFRobertaModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
|
|
|
|
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = [1, 11, 50265]
|
|
self.assertEqual(list(output.numpy().shape), expected_shape)
|
|
# compare the actual values for a slice.
|
|
expected_slice = tf.constant(
|
|
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
|
|
)
|
|
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
model = TFRobertaModel.from_pretrained("roberta-base")
|
|
|
|
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
# compare the actual values for a slice.
|
|
expected_slice = tf.constant(
|
|
[[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
|
|
)
|
|
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_classification_head(self):
|
|
model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
|
|
|
|
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = [1, 3]
|
|
self.assertEqual(list(output.numpy().shape), expected_shape)
|
|
expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
|
|
self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))
|