transformers/tests/test_modeling_tf_core.py
N 1991da07f7
[WIP] Ensure TF model configs can be converted to proper JSON (#14415)
* test: make sure model configs are jsonifiable

* fix: return python dict instead of config object

* fix: accept pretrained config and use correct class

* Re-enabling slow tests and applying them to core models only

* Re-enabling slow tests and applying them to core models only

* Add new test file to fetcher

* Remove tooslow tests from test_modeling_tf_common.py

* make style

* Style fixes

* Style fixes

* Style fixes

* Style fixes

* Adding core tests to GPT2 and BART

* Removing unused imports

Co-authored-by: niklas.fruehauf <niklas.fruehauf@sovanta.com>
Co-authored-by: matt <rocketknight1@gmail.com>
2021-11-17 20:24:39 +00:00

358 lines
15 KiB
Python

# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import tempfile
from importlib import import_module
from transformers import is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import _tf_gpu_memory_limit, require_tf, slow
from .test_modeling_tf_common import ids_tensor
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TFSharedEmbeddings,
)
if _tf_gpu_memory_limit is not None:
gpus = tf.config.list_physical_devices("GPU")
for gpu in gpus:
# Restrict TensorFlow to only allocate x GB of memory on the GPUs
try:
tf.config.set_logical_device_configuration(
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
)
logical_gpus = tf.config.list_logical_devices("GPU")
print("Logical GPUs", logical_gpus)
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
@require_tf
class TFCoreModelTesterMixin:
model_tester = None
all_model_classes = ()
all_generative_model_classes = ()
test_mismatched_shapes = True
test_resize_embeddings = True
test_head_masking = True
is_encoder_decoder = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
inputs_dict = copy.deepcopy(inputs_dict)
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict = {
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
if isinstance(v, tf.Tensor) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]:
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
]:
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
return inputs_dict
@slow
def test_graph_mode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@tf.function
def run_in_graph_mode():
return model(inputs)
outputs = run_in_graph_mode()
self.assertIsNotNone(outputs)
@slow
def test_xla_mode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@tf.function(experimental_compile=True)
def run_in_graph_mode():
return model(inputs)
outputs = run_in_graph_mode()
self.assertIsNotNone(outputs)
@slow
def test_saved_model_creation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = False
config.output_attentions = False
if hasattr(config, "use_cache"):
config.use_cache = False
model_class = self.all_model_classes[0]
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
model(class_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
self.assertTrue(os.path.exists(saved_model_dir))
@slow
def test_saved_model_creation_extended(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
if hasattr(config, "use_cache"):
config.use_cache = True
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
num_out = len(model(class_inputs_dict))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, saved_model=True)
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
model = tf.keras.models.load_model(saved_model_dir)
outputs = model(class_inputs_dict)
if self.is_encoder_decoder:
output_hidden_states = outputs["encoder_hidden_states"]
output_attentions = outputs["encoder_attentions"]
else:
output_hidden_states = outputs["hidden_states"]
output_attentions = outputs["attentions"]
self.assertEqual(len(outputs), num_out)
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(output_hidden_states), expected_num_layers)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]),
[self.model_tester.seq_length, self.model_tester.hidden_size],
)
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
@slow
def test_mixed_precision(self):
tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
outputs = model(class_inputs_dict)
self.assertIsNotNone(outputs)
tf.keras.mixed_precision.experimental.set_policy("float32")
@slow
def test_train_pipeline_custom_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# head_mask and decoder_head_mask has different shapes than other input args
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
if "decoder_head_mask" in inputs_dict:
del inputs_dict["decoder_head_mask"]
if "cross_attn_head_mask" in inputs_dict:
del inputs_dict["cross_attn_head_mask"]
tf_main_layer_classes = set(
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
if module_member_name.endswith("MainLayer")
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type)
and tf.keras.layers.Layer in module_member.__bases__
and getattr(module_member, "_keras_serializable", False)
)
for main_layer_class in tf_main_layer_classes:
# T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
if "T5" in main_layer_class.__name__:
# Take the same values than in TFT5ModelTester for this shared layer
shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
config.use_cache = False
main_layer = main_layer_class(config, embed_tokens=shared)
else:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
}
if hasattr(self.model_tester, "num_labels"):
num_labels = self.model_tester.num_labels
else:
num_labels = 2
X = tf.data.Dataset.from_tensor_slices(
(inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1)))
).batch(1)
hidden_states = main_layer(symbolic_inputs)[0]
outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"])
model.fit(X, epochs=1)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
if "T5" in main_layer_class.__name__:
model = tf.keras.models.load_model(
filepath,
custom_objects={
main_layer_class.__name__: main_layer_class,
"TFSharedEmbeddings": TFSharedEmbeddings,
},
)
else:
model = tf.keras.models.load_model(
filepath, custom_objects={main_layer_class.__name__: main_layer_class}
)
assert isinstance(model, tf.keras.Model)
model(inputs_dict)
@slow
def test_graph_mode_with_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
inputs = copy.deepcopy(inputs_dict)
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
else:
inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
inputs = self._prepare_for_class(inputs, model_class)
@tf.function
def run_in_graph_mode():
return model(inputs)
outputs = run_in_graph_mode()
self.assertIsNotNone(outputs)
def _generate_random_bad_tokens(self, num_bad_tokens, model):
# special tokens cannot be bad tokens
special_tokens = []
if model.config.bos_token_id is not None:
special_tokens.append(model.config.bos_token_id)
if model.config.pad_token_id is not None:
special_tokens.append(model.config.pad_token_id)
if model.config.eos_token_id is not None:
special_tokens.append(model.config.eos_token_id)
# create random bad tokens that are not special tokens
bad_tokens = []
while len(bad_tokens) < num_bad_tokens:
token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
if token not in special_tokens:
bad_tokens.append(token)
return bad_tokens
def _check_generated_ids(self, output_ids):
for token_id in output_ids[0].numpy().tolist():
self.assertGreaterEqual(token_id, 0)
self.assertLess(token_id, self.model_tester.vocab_size)
def _check_match_tokens(self, generated_ids, bad_words_ids):
# for all bad word tokens
for bad_word_ids in bad_words_ids:
# for all slices in batch
for generated_ids_slice in generated_ids:
# for all word idx
for i in range(len(bad_word_ids), len(generated_ids_slice)):
# if tokens match
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
return True
return False