mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* fix_torch_device_generate_test * remove @ * up * correct some bugs * correct model * finish speech2text extension * up * up * up * up * Update utils/custom_init_isort.py * up * up * update with tokenizer * correct old tok * correct old tok * fix bug * up * up * add more tests * up * fix docs * up * fix some more tests * add better config * correct some more things " * fix tests * improve docs * Apply suggestions from code review * Apply suggestions from code review * final fixes * finalize * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * apply suggestions Lysandre and Sylvain * apply nicos suggestions * upload everything * finish Co-authored-by: Patrick von Platen <patrick@huggingface.co> Co-authored-by: your_github_username <your_github_email> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
212 lines
7.2 KiB
Python
212 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch Speech2Text model. """
|
|
|
|
import unittest
|
|
|
|
from transformers import Speech2Text2Config
|
|
from transformers.testing_utils import is_torch_available, require_torch, torch_device
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_generation_utils import GenerationTesterMixin
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.speech_to_text_2.modeling_speech_to_text_2 import (
|
|
Speech2Text2Decoder,
|
|
Speech2Text2ForCausalLM,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class Speech2Text2StandaloneDecoderModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
vocab_size=99,
|
|
batch_size=13,
|
|
d_model=16,
|
|
decoder_seq_length=7,
|
|
is_training=True,
|
|
is_decoder=True,
|
|
use_attention_mask=True,
|
|
use_cache=False,
|
|
use_labels=True,
|
|
decoder_start_token_id=2,
|
|
decoder_ffn_dim=32,
|
|
decoder_layers=4,
|
|
decoder_attention_heads=4,
|
|
max_position_embeddings=30,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.decoder_seq_length = decoder_seq_length
|
|
# For common tests
|
|
self.seq_length = self.decoder_seq_length
|
|
self.is_training = is_training
|
|
self.use_attention_mask = use_attention_mask
|
|
self.use_labels = use_labels
|
|
|
|
self.vocab_size = vocab_size
|
|
self.d_model = d_model
|
|
self.hidden_size = d_model
|
|
self.num_hidden_layers = decoder_layers
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.decoder_attention_heads = decoder_attention_heads
|
|
self.num_attention_heads = decoder_attention_heads
|
|
self.eos_token_id = eos_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.decoder_start_token_id = decoder_start_token_id
|
|
self.use_cache = use_cache
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.scope = None
|
|
self.decoder_key_length = decoder_seq_length
|
|
self.base_model_out_len = 2
|
|
self.decoder_attention_idx = 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
|
|
|
|
attention_mask = None
|
|
if self.use_attention_mask:
|
|
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
|
|
|
|
lm_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
|
|
|
|
config = Speech2Text2Config(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.d_model,
|
|
decoder_layers=self.decoder_layers,
|
|
decoder_ffn_dim=self.decoder_ffn_dim,
|
|
decoder_attention_heads=self.decoder_attention_heads,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
use_cache=self.use_cache,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_start_token_id=self.decoder_start_token_id,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
)
|
|
|
|
def create_and_check_decoder_model_past(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
):
|
|
config.use_cache = True
|
|
model = Speech2Text2Decoder(config=config).to(torch_device).eval()
|
|
input_ids = input_ids[:2]
|
|
|
|
input_ids[input_ids == 0] += 1
|
|
# first forward pass
|
|
outputs = model(input_ids, use_cache=True)
|
|
outputs_use_cache_conf = model(input_ids)
|
|
outputs_no_past = model(input_ids, use_cache=False)
|
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
|
|
|
past_key_values = outputs["past_key_values"]
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
|
|
print(next_input_ids)
|
|
|
|
output_from_no_past = model(next_input_ids)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
|
|
|
# test that outputs are equal for slice
|
|
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
lm_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Speech2Text2StandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Speech2Text2Decoder, Speech2Text2ForCausalLM) if is_torch_available() else ()
|
|
all_generative_model_classes = (Speech2Text2ForCausalLM,) if is_torch_available() else ()
|
|
test_pruning = False
|
|
|
|
def setUp(
|
|
self,
|
|
):
|
|
self.model_tester = Speech2Text2StandaloneDecoderModelTester(self, is_training=False)
|
|
self.config_tester = ConfigTester(self, config_class=Speech2Text2Config)
|
|
|
|
# not implemented currently
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
# speech2text2 has no base model
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
# speech2text2 has no base model
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_decoder_model_past(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
|
|
|
|
# decoder cannot keep gradients
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
return
|