mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Squash all commits of modeling_detr_v7 branch into one * Improve docs * Fix tests * Style * Improve docs some more and fix most tests * Fix slow tests of ViT, DeiT and DETR * Improve replacement of batch norm * Restructure timm backbone forward * Make DetrForSegmentation support any timm backbone * Fix name of output * Address most comments by @LysandreJik * Give better names for variables * Conditional imports + timm in setup.py * Address additional comments by @sgugger * Make style, add require_timm and require_vision to testsé * Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone * Add png files to fixtures * Fix type hint * Add timm to workflows * Add `BatchNorm2d` to the weight initialization * Fix retain_grad test * Replace model checkpoints by Facebook namespace * Fix name of checkpoint in test * Add user-friendly message when scipy is not available * Address most comments by @patrickvonplaten * Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner * Better initialization * Scipy is necessary to get sklearn metrics * Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel * Make style * Improve docs and add 2 community notebooks Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
192 lines
6.5 KiB
Python
192 lines
6.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.file_utils import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
|
|
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ViTFeatureExtractor
|
|
|
|
|
|
class ViTFeatureExtractionTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=18,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_feat_extract_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
|
|
|
|
feature_extraction_class = ViTFeatureExtractor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.feature_extract_tester = ViTFeatureExtractionTester(self)
|
|
|
|
@property
|
|
def feat_extract_dict(self):
|
|
return self.feature_extract_tester.prepare_feat_extract_dict()
|
|
|
|
def test_feat_extract_properties(self):
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
self.assertTrue(hasattr(feature_extractor, "image_mean"))
|
|
self.assertTrue(hasattr(feature_extractor, "image_std"))
|
|
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
|
|
self.assertTrue(hasattr(feature_extractor, "do_resize"))
|
|
self.assertTrue(hasattr(feature_extractor, "size"))
|
|
|
|
def test_batch_feature(self):
|
|
pass
|
|
|
|
def test_call_pil(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random PIL images
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random numpy tensors
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize feature_extractor
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
self.feature_extract_tester.batch_size,
|
|
self.feature_extract_tester.num_channels,
|
|
self.feature_extract_tester.size,
|
|
self.feature_extract_tester.size,
|
|
),
|
|
)
|