transformers/docs/source/fast_tokenizers.rst
Lysandre Debut 9f4e0c23d6
Documentation about loading a fast tokenizer within Transformers (#11029)
* Documentation about loading a fast tokenizer within Transformers

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-05 10:51:16 -04:00

63 lines
2.6 KiB
ReStructuredText

Using tokenizers from 🤗 Tokenizers
=======================================================================================================================
The :class:`~transformers.PreTrainedTokenizerFast` depends on the `tokenizers
<https://huggingface.co/docs/tokenizers>`__ library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.
Before getting in the specifics, let's first start by creating a dummy tokenizer in a few lines:
.. code-block::
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
We now have a tokenizer trained on the files we defined. We can either continue using it in that runtime, or save it to
a JSON file for future re-use.
Loading directly from the tokenizer object
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Let's see how to leverage this tokenizer object in the 🤗 Transformers library. The
:class:`~transformers.PreTrainedTokenizerFast` class allows for easy instantiation, by accepting the instantiated
`tokenizer` object as an argument:
.. code-block::
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to :doc:`the tokenizer
page <main_classes/tokenizer>` for more information.
Loading from a JSON file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:
.. code-block::
>>> tokenizer.save("tokenizer.json")
The path to which we saved this file can be passed to the :class:`~transformers.PreTrainedTokenizerFast` initialization
method using the :obj:`tokenizer_file` parameter:
.. code-block::
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to :doc:`the tokenizer
page <main_classes/tokenizer>` for more information.