mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
598 lines
24 KiB
Python
598 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT finetuning runner."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import csv
|
|
import os
|
|
import logging
|
|
import argparse
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm, trange
|
|
import torch
|
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
import tokenization_pytorch
|
|
from modeling_pytorch import BertConfig, BertForSequenceClassification
|
|
from optimization_pytorch import BERTAdam
|
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt = '%m/%d/%Y %H:%M:%S',
|
|
level = logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class InputExample(object):
|
|
"""A single training/test example for simple sequence classification."""
|
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None):
|
|
"""Constructs a InputExample.
|
|
|
|
Args:
|
|
guid: Unique id for the example.
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
sequence tasks, only this sequence must be specified.
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
Only must be specified for sequence pair tasks.
|
|
label: (Optional) string. The label of the example. This should be
|
|
specified for train and dev examples, but not for test examples.
|
|
"""
|
|
self.guid = guid
|
|
self.text_a = text_a
|
|
self.text_b = text_b
|
|
self.label = label
|
|
|
|
|
|
class InputFeatures(object):
|
|
"""A single set of features of data."""
|
|
|
|
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
|
self.input_ids = input_ids
|
|
self.input_mask = input_mask
|
|
self.segment_ids = segment_ids
|
|
self.label_id = label_id
|
|
|
|
|
|
class DataProcessor(object):
|
|
"""Base class for data converters for sequence classification data sets."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the train set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the dev set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_labels(self):
|
|
"""Gets the list of labels for this data set."""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def _read_tsv(cls, input_file, quotechar=None):
|
|
"""Reads a tab separated value file."""
|
|
with open(input_file, "r") as f:
|
|
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
|
lines = []
|
|
for line in reader:
|
|
lines.append(line)
|
|
return lines
|
|
|
|
|
|
class MrpcProcessor(DataProcessor):
|
|
"""Processor for the MRPC data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
print("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, i)
|
|
text_a = tokenization_pytorch.convert_to_unicode(line[3])
|
|
text_b = tokenization_pytorch.convert_to_unicode(line[4])
|
|
label = tokenization_pytorch.convert_to_unicode(line[0])
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
|
|
class MnliProcessor(DataProcessor):
|
|
"""Processor for the MultiNLI data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
|
"dev_matched")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["contradiction", "entailment", "neutral"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
|
|
text_a = tokenization_pytorch.convert_to_unicode(line[8])
|
|
text_b = tokenization_pytorch.convert_to_unicode(line[9])
|
|
label = tokenization_pytorch.convert_to_unicode(line[-1])
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
|
|
class ColaProcessor(DataProcessor):
|
|
"""Processor for the CoLA data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
guid = "%s-%s" % (set_type, i)
|
|
text_a = tokenization_pytorch.convert_to_unicode(line[3])
|
|
label = tokenization_pytorch.convert_to_unicode(line[1])
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
|
return examples
|
|
|
|
|
|
def convert_examples_to_features(examples, label_list, max_seq_length,
|
|
tokenizer):
|
|
"""Loads a data file into a list of `InputBatch`s."""
|
|
|
|
label_map = {}
|
|
for (i, label) in enumerate(label_list):
|
|
label_map[label] = i
|
|
|
|
features = []
|
|
for (ex_index, example) in enumerate(examples):
|
|
tokens_a = tokenizer.tokenize(example.text_a)
|
|
|
|
tokens_b = None
|
|
if example.text_b:
|
|
tokens_b = tokenizer.tokenize(example.text_b)
|
|
|
|
if tokens_b:
|
|
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
|
# length is less than the specified length.
|
|
# Account for [CLS], [SEP], [SEP] with "- 3"
|
|
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
|
else:
|
|
# Account for [CLS] and [SEP] with "- 2"
|
|
if len(tokens_a) > max_seq_length - 2:
|
|
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
|
|
|
# The convention in BERT is:
|
|
# (a) For sequence pairs:
|
|
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
|
# (b) For single sequences:
|
|
# tokens: [CLS] the dog is hairy . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0
|
|
#
|
|
# Where "type_ids" are used to indicate whether this is the first
|
|
# sequence or the second sequence. The embedding vectors for `type=0` and
|
|
# `type=1` were learned during pre-training and are added to the wordpiece
|
|
# embedding vector (and position vector). This is not *strictly* necessary
|
|
# since the [SEP] token unambigiously separates the sequences, but it makes
|
|
# it easier for the model to learn the concept of sequences.
|
|
#
|
|
# For classification tasks, the first vector (corresponding to [CLS]) is
|
|
# used as as the "sentence vector". Note that this only makes sense because
|
|
# the entire model is fine-tuned.
|
|
tokens = []
|
|
segment_ids = []
|
|
tokens.append("[CLS]")
|
|
segment_ids.append(0)
|
|
for token in tokens_a:
|
|
tokens.append(token)
|
|
segment_ids.append(0)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(0)
|
|
|
|
if tokens_b:
|
|
for token in tokens_b:
|
|
tokens.append(token)
|
|
segment_ids.append(1)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(1)
|
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
|
# tokens are attended to.
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
# Zero-pad up to the sequence length.
|
|
while len(input_ids) < max_seq_length:
|
|
input_ids.append(0)
|
|
input_mask.append(0)
|
|
segment_ids.append(0)
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
assert len(input_mask) == max_seq_length
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
label_id = label_map[example.label]
|
|
if ex_index < 5:
|
|
logger.info("*** Example ***")
|
|
logger.info("guid: %s" % (example.guid))
|
|
logger.info("tokens: %s" % " ".join(
|
|
[tokenization_pytorch.printable_text(x) for x in tokens]))
|
|
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
|
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
|
logger.info(
|
|
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
|
logger.info("label: %s (id = %d)" % (example.label, label_id))
|
|
|
|
features.append(
|
|
InputFeatures(
|
|
input_ids=input_ids,
|
|
input_mask=input_mask,
|
|
segment_ids=segment_ids,
|
|
label_id=label_id))
|
|
return features
|
|
|
|
|
|
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
|
"""Truncates a sequence pair in place to the maximum length."""
|
|
|
|
# This is a simple heuristic which will always truncate the longer sequence
|
|
# one token at a time. This makes more sense than truncating an equal percent
|
|
# of tokens from each, since if one sequence is very short then each token
|
|
# that's truncated likely contains more information than a longer sequence.
|
|
while True:
|
|
total_length = len(tokens_a) + len(tokens_b)
|
|
if total_length <= max_length:
|
|
break
|
|
if len(tokens_a) > len(tokens_b):
|
|
tokens_a.pop()
|
|
else:
|
|
tokens_b.pop()
|
|
|
|
|
|
def input_fn_builder(features, seq_length, train_batch_size):
|
|
# TODO: delete
|
|
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###
|
|
|
|
all_input_ids = [f.input_ids for feature in features]
|
|
all_input_mask = [f.input_mask for feature in features]
|
|
all_segment_ids = [f.segment_ids for feature in features]
|
|
all_label_ids = [f.label_id for feature in features]
|
|
|
|
# for feature in features:
|
|
# all_input_ids.append(feature.input_ids)
|
|
# all_input_mask.append(feature.input_mask)
|
|
# all_segment_ids.append(feature.segment_ids)
|
|
# all_label_ids.append(feature.label_id)
|
|
|
|
input_ids_tensor = torch.tensor(all_input_ids, dtype=torch.Long)
|
|
input_mask_tensor = torch.tensor(all_input_mask, dtype=torch.Long)
|
|
segment_tensor = torch.tensor(all_segment_ids, dtype=torch.Long)
|
|
label_tensor = torch.tensor(all_label_ids, dtype=torch.Long)
|
|
|
|
train_data = TensorDataset(input_ids_tensor, input_mask_tensor,
|
|
segment_tensor, label_tensor)
|
|
if args.local_rank == -1:
|
|
train_sampler = RandomSampler(train_data)
|
|
else:
|
|
train_sampler = DistributedSampler(train_data)
|
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=train_batch_size)
|
|
|
|
return train_dataloader
|
|
|
|
def accuracy(out, labels):
|
|
outputs = np.argmax(out, axis=1)
|
|
return np.sum(outputs==labels)
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--data_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--bert_config_file",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The config json file corresponding to the pre-trained BERT model. \n"
|
|
"This specifies the model architecture.")
|
|
parser.add_argument("--task_name",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The name of the task to train.")
|
|
parser.add_argument("--vocab_file",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The vocabulary file that the BERT model was trained on.")
|
|
parser.add_argument("--output_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The output directory where the model checkpoints will be written.")
|
|
|
|
## Other parameters
|
|
parser.add_argument("--init_checkpoint",
|
|
default=None,
|
|
type=str,
|
|
help="Initial checkpoint (usually from a pre-trained BERT model).")
|
|
parser.add_argument("--do_lower_case",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to lower case the input text. Should be True for uncased models and False for cased models.")
|
|
parser.add_argument("--max_seq_length",
|
|
default=128,
|
|
type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, and sequences shorter \n"
|
|
"than this will be padded.")
|
|
parser.add_argument("--do_train",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to run training.")
|
|
parser.add_argument("--do_eval",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether to run eval on the dev set.")
|
|
parser.add_argument("--train_batch_size",
|
|
default=32,
|
|
type=int,
|
|
help="Total batch size for training.")
|
|
parser.add_argument("--eval_batch_size",
|
|
default=8,
|
|
type=int,
|
|
help="Total batch size for eval.")
|
|
parser.add_argument("--learning_rate",
|
|
default=5e-5,
|
|
type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--num_train_epochs",
|
|
default=3.0,
|
|
type=float,
|
|
help="Total number of training epochs to perform.")
|
|
parser.add_argument("--warmup_proportion",
|
|
default=0.1,
|
|
type=float,
|
|
help="Proportion of training to perform linear learning rate warmup for. "
|
|
"E.g., 0.1 = 10%% of training.")
|
|
parser.add_argument("--save_checkpoints_steps",
|
|
default=1000,
|
|
type=int,
|
|
help="How often to save the model checkpoint.")
|
|
parser.add_argument("--no_cuda",
|
|
default=False,
|
|
action='store_true',
|
|
help="Whether not to use CUDA when available")
|
|
parser.add_argument("--local_rank",
|
|
type=int,
|
|
default=-1,
|
|
help="local_rank for distributed training on gpus")
|
|
|
|
args = parser.parse_args()
|
|
|
|
processors = {
|
|
"cola": ColaProcessor,
|
|
"mnli": MnliProcessor,
|
|
"mrpc": MrpcProcessor,
|
|
}
|
|
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
n_gpu = torch.cuda.device_count()
|
|
else:
|
|
device = torch.device("cuda", args.local_rank)
|
|
n_gpu = 1
|
|
# print("Initializing the distributed backend: NCCL")
|
|
print("device", device, "n_gpu", n_gpu)
|
|
|
|
if not args.do_train and not args.do_eval:
|
|
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
|
|
|
bert_config = BertConfig.from_json_file(args.bert_config_file)
|
|
|
|
if args.max_seq_length > bert_config.max_position_embeddings:
|
|
raise ValueError(
|
|
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
|
|
args.max_seq_length, bert_config.max_position_embeddings))
|
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
task_name = args.task_name.lower()
|
|
|
|
if task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (task_name))
|
|
|
|
processor = processors[task_name]()
|
|
|
|
label_list = processor.get_labels()
|
|
|
|
tokenizer = tokenization_pytorch.FullTokenizer(
|
|
vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
|
|
|
|
train_examples = None
|
|
num_train_steps = None
|
|
if args.do_train:
|
|
train_examples = processor.get_train_examples(args.data_dir)
|
|
num_train_steps = int(
|
|
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
|
|
|
model = BertForSequenceClassification(bert_config, len(label_list))
|
|
if args.init_checkpoint is not None:
|
|
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
|
|
model.to(device)
|
|
|
|
if n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
no_decay = ['bias', 'gamma', 'beta']
|
|
optimizer_parameters = [
|
|
{'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
|
|
{'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
|
|
]
|
|
|
|
optimizer = BERTAdam(optimizer_parameters,
|
|
lr=args.learning_rate,
|
|
warmup=args.warmup_proportion,
|
|
t_total=num_train_steps)
|
|
|
|
global_step = 0
|
|
total_tr_loss = 0
|
|
if args.do_train:
|
|
train_features = convert_examples_to_features(
|
|
train_examples, label_list, args.max_seq_length, tokenizer)
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_examples))
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Num steps = %d", num_train_steps)
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
|
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
|
|
|
|
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
if args.local_rank == -1:
|
|
train_sampler = RandomSampler(train_data)
|
|
else:
|
|
train_sampler = DistributedSampler(train_data)
|
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
model.train()
|
|
nb_tr_examples = 0
|
|
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
|
|
for input_ids, input_mask, segment_ids, label_ids in tqdm(train_dataloader, desc="Iteration"):
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.float().to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
label_ids = label_ids.to(device)
|
|
|
|
loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
|
|
total_tr_loss += loss.sum().item() # sum() is to account for multi-gpu support.
|
|
nb_tr_examples += input_ids.size(0)
|
|
model.zero_grad()
|
|
loss.sum().backward() # sum() is to account for multi-gpu support.
|
|
optimizer.step()
|
|
global_step += 1
|
|
|
|
if args.do_eval:
|
|
eval_examples = processor.get_dev_examples(args.data_dir)
|
|
eval_features = convert_examples_to_features(
|
|
eval_examples, label_list, args.max_seq_length, tokenizer)
|
|
|
|
logger.info("***** Running evaluation *****")
|
|
logger.info(" Num examples = %d", len(eval_examples))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
|
|
|
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
|
|
if args.local_rank == -1:
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
else:
|
|
eval_sampler = DistributedSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
model.eval()
|
|
eval_loss = 0
|
|
eval_accuracy = 0
|
|
nb_eval_examples = 0
|
|
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.float().to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
label_ids = label_ids.to(device)
|
|
|
|
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
|
|
|
|
logits = logits.detach().cpu().numpy()
|
|
label_ids = label_ids.to('cpu').numpy()
|
|
tmp_eval_accuracy = accuracy(logits, label_ids)
|
|
|
|
eval_loss += tmp_eval_loss.sum().item()
|
|
eval_accuracy += tmp_eval_accuracy
|
|
|
|
nb_eval_examples += input_ids.size(0)
|
|
|
|
eval_loss = eval_loss / nb_eval_examples #len(eval_dataloader)
|
|
eval_accuracy = eval_accuracy / nb_eval_examples #len(eval_dataloader)
|
|
|
|
result = {'eval_loss': eval_loss,
|
|
'eval_accuracy': eval_accuracy,
|
|
'global_step': global_step,
|
|
'loss': total_tr_loss/nb_tr_examples}#'loss': loss.item()}
|
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|