mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 18:18:24 +06:00

* add VITS model * let's vits * finish TextEncoder (mostly) * rename VITS to Vits * add StochasticDurationPredictor * ads flow model * add generator * correctly set vocab size * add tokenizer * remove processor & feature extractor * add PosteriorEncoder * add missing weights to SDP * also convert LJSpeech and VCTK checkpoints * add training stuff in forward * add placeholder tests for tokenizer * add placeholder tests for model * starting cleanup * let the great renaming begin! * use config * global_conditioning * more cleaning * renaming variables * more renaming * more renaming * it never ends * reticulating the splines * more renaming * HiFi-GAN * doc strings for main model * fixup * fix-copies * don't make it a PreTrainedModel * fixup * rename config options * remove training logic from forward pass * simplify relative position * use actual checkpoint * style * PR review fixes * more review changes * fixup * more unit tests * fixup * fix doc test * add integration test * improve tokenizer tests * add tokenizer integration test * fix tests on GPU (gave OOM) * conversion script can handle repos from hub * add conversion script for all MMS-TTS checkpoints * automatically create a README for the converted checkpoint * small changes to config * push README to hub * only show uroman note for checkpoints that need it * remove conversion script because code formatting breaks the readme * make WaveNet layers configurable * rename variables * simplifying the math * output attentions and hidden states * remove VitsFlip in flow model * also got rid of the other flip * fix tests * rename more variables * rename tokenizer, add phonemization * raise error when phonemizer missing * re-order config docstrings to match method * change config naming * remove redundant str -> list * fix copyright: vits authors -> kakao enterprise * (mean, log_variances) -> (prior_mean, prior_log_variances) * if return dict -> if not return dict * speed -> speaking rate * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * update fused tanh sigmoid * reduce dims in tester * audio -> output_values * audio -> output_values in tuple out * fix return type * fix return type * make _unconstrained_rational_quadratic_spline a function * all nn's to accept a config * add spectro to output * move {speaking rate, noise scale, noise scale duration} to config * path -> attn_path * idxs -> valid idxs -> padded idxs * output values -> waveform * use config for attention * make generation work * harden integration test * add spectrogram to dict output * tokenizer refactor * make style * remove 'fake' padding token * harden tokenizer tests * ron norm test * fprop / save tests deterministic * move uroman to tokenizer as much as possible * better logger message * fix vivit imports * add uroman integration test * make style * up * matthijs -> sanchit-gandhi * fix tokenizer test * make fix-copies * fix dict comprehension * fix config tests * fix model tests * make outputs consistent with reverse/not reverse * fix key concat * more model details * add author * return dict * speaker error * labels error * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update src/transformers/models/vits/convert_original_checkpoint.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * remove uromanize * add docstrings * add docstrings for tokenizer * upper-case skip messages * fix return dict * style * finish tests * update checkpoints * make style * remove doctest file * revert * fix docstring * fix tokenizer * remove uroman integration test * add sampling rate * fix docs / docstrings * style * add sr to model output * fix outputs * style / copies * fix docstring * fix copies * remove sr from model outputs * Update utils/documentation_tests.txt Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * add sr as allowed attr --------- Co-authored-by: sanchit-gandhi <sanchit@huggingface.co> Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
188 lines
13 KiB
Python
188 lines
13 KiB
Python
# coding=utf-8
|
||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""Tests for the VITS tokenizer."""
|
||
import json
|
||
import os
|
||
import shutil
|
||
import tempfile
|
||
import unittest
|
||
|
||
from transformers import VitsTokenizer
|
||
from transformers.models.vits.tokenization_vits import VOCAB_FILES_NAMES
|
||
from transformers.testing_utils import slow
|
||
|
||
from ...test_tokenization_common import TokenizerTesterMixin
|
||
|
||
|
||
class VitsTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
|
||
tokenizer_class = VitsTokenizer
|
||
test_rust_tokenizer = False
|
||
|
||
def setUp(self):
|
||
super().setUp()
|
||
|
||
vocab = (
|
||
"k ' z y u d h e s w – 3 c p - 1 j m i X f l o 0 b r a 4 2 n _ x v t q 5 6 g ț ţ < > | <pad> <unk>".split(
|
||
" "
|
||
)
|
||
)
|
||
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
||
vocab_tokens[" "] = vocab_tokens["X"]
|
||
del vocab_tokens["X"]
|
||
|
||
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>"}
|
||
|
||
self.tmpdirname = tempfile.mkdtemp()
|
||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
||
fp.write(json.dumps(vocab_tokens) + "\n")
|
||
|
||
def get_tokenizer(self, **kwargs):
|
||
kwargs.update(self.special_tokens_map)
|
||
kwargs["phonemize"] = False
|
||
kwargs["normalize"] = False
|
||
return VitsTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
||
|
||
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5):
|
||
txt = "beyonce lives in los angeles"
|
||
ids = tokenizer.encode(txt, add_special_tokens=False)
|
||
return txt, ids
|
||
|
||
@unittest.skip("Adding multicharacter tokens does not work with the VITS tokenizer")
|
||
def test_add_tokens_tokenizer(self):
|
||
pass
|
||
|
||
@unittest.skip("Adding multicharacter tokens does not work with the VITS tokenizer")
|
||
def test_encode_decode_with_spaces(self):
|
||
pass
|
||
|
||
@unittest.skip("The VITS tokenizer does not support `is_split_into_words`")
|
||
def test_pretokenized_inputs(self):
|
||
pass
|
||
|
||
def test_save_and_load_tokenizer(self):
|
||
# safety check on max_len default value so we are sure the test works
|
||
tokenizers = self.get_tokenizers()
|
||
for tokenizer in tokenizers:
|
||
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
||
self.assertNotEqual(tokenizer.model_max_length, 42)
|
||
|
||
# Now let's start the test
|
||
tokenizers = self.get_tokenizers()
|
||
for tokenizer in tokenizers:
|
||
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
||
# Isolate this from the other tests because we save additional tokens/etc
|
||
tmpdirname = tempfile.mkdtemp()
|
||
|
||
sample_text = " He is very happy, UNwant\u00E9d,running"
|
||
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
|
||
before_vocab = tokenizer.get_vocab()
|
||
tokenizer.save_pretrained(tmpdirname)
|
||
|
||
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
|
||
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
|
||
after_vocab = after_tokenizer.get_vocab()
|
||
self.assertListEqual(before_tokens, after_tokens)
|
||
self.assertDictEqual(before_vocab, after_vocab)
|
||
|
||
shutil.rmtree(tmpdirname)
|
||
|
||
@unittest.skip("Adding multicharacter tokens does not work the VITS tokenizer")
|
||
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
|
||
pass
|
||
|
||
def test_ron_normalization(self):
|
||
tokenizer = self.get_tokenizer()
|
||
tokenizer.language = "ron"
|
||
|
||
sequences = ["vițs"]
|
||
normalized_sequences = ["viţs"]
|
||
|
||
encoded_ids = tokenizer(sequences, normalize=True)["input_ids"]
|
||
decoded_sequences = tokenizer.batch_decode(encoded_ids)
|
||
self.assertEqual(normalized_sequences, decoded_sequences)
|
||
|
||
def test_normalization(self):
|
||
tokenizer = self.get_tokenizer()
|
||
|
||
sequences = ["VITS; is a model for t-t-s!"]
|
||
normalized_sequences = ["vits is a model for t-t-s"]
|
||
unnormalized_sequences = [
|
||
"<unk><unk><unk><unk><unk> is a model for t-t-s<unk>"
|
||
] # can't handle upper-case or certain punctuations
|
||
|
||
encoded_normalized_ids = tokenizer(sequences, normalize=True)
|
||
encoded_unnormalized_ids = tokenizer(sequences, normalize=False)
|
||
|
||
decoded_normalized_sequences = [
|
||
tokenizer.decode(seq, skip_special_tokens=False) for seq in encoded_normalized_ids["input_ids"]
|
||
]
|
||
decoded_unnormalized_sequences = [
|
||
tokenizer.decode(seq, skip_special_tokens=False) for seq in encoded_unnormalized_ids["input_ids"]
|
||
]
|
||
|
||
self.assertEqual(decoded_normalized_sequences, normalized_sequences)
|
||
self.assertEqual(decoded_unnormalized_sequences, unnormalized_sequences)
|
||
|
||
@slow
|
||
def test_tokenizer_integration(self):
|
||
sequences = [
|
||
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
|
||
"conditioning on both left and right context in all layers.",
|
||
"The quick brown fox! Jumps over the lazy dog...",
|
||
"We use k as our padding token",
|
||
]
|
||
|
||
normalized_sequences = [
|
||
"bert is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
|
||
"conditioning on both left and right context in all layers",
|
||
"the quick brown fox jumps over the lazy dog",
|
||
"we use k as our padding token",
|
||
]
|
||
|
||
# fmt: off
|
||
expected_encoding = {
|
||
'input_ids': [
|
||
[0, 24, 0, 7, 0, 25, 0, 33, 0, 19, 0, 18, 0, 8, 0, 19, 0, 5, 0, 7, 0, 8, 0, 18, 0, 37, 0, 29, 0, 7, 0, 5, 0, 19, 0, 33, 0, 22, 0, 19, 0, 13, 0, 25, 0, 7, 0, 14, 0, 33, 0, 25, 0, 26, 0, 18, 0, 29, 0, 19, 0, 5, 0, 7, 0, 7, 0, 13, 0, 19, 0, 24, 0, 18, 0, 5, 0, 18, 0, 25, 0, 7, 0, 12, 0, 33, 0, 18, 0, 22, 0, 29, 0, 26, 0, 21, 0, 19, 0, 25, 0, 7, 0, 13, 0, 25, 0, 7, 0, 8, 0, 7, 0, 29, 0, 33, 0, 26, 0, 33, 0, 18, 0, 22, 0, 29, 0, 8, 0, 19, 0, 20, 0, 25, 0, 22, 0, 17, 0, 19, 0, 4, 0, 29, 0, 21, 0, 26, 0, 24, 0, 7, 0, 21, 0, 7, 0, 5, 0, 19, 0, 33, 0, 7, 0, 31, 0, 33, 0, 19, 0, 24, 0, 3, 0, 19, 0, 16, 0, 22, 0, 18, 0, 29, 0, 33, 0, 21, 0, 3, 0, 19, 0, 12, 0, 22, 0, 29, 0, 5, 0, 18, 0, 33, 0, 18, 0, 22, 0, 29, 0, 18, 0, 29, 0, 37, 0, 19, 0, 22, 0, 29, 0, 19, 0, 24, 0, 22, 0, 33, 0, 6, 0, 19, 0, 21, 0, 7, 0, 20, 0, 33, 0, 19, 0, 26, 0, 29, 0, 5, 0, 19, 0, 25, 0, 18, 0, 37, 0, 6, 0, 33, 0, 19, 0, 12, 0, 22, 0, 29, 0, 33, 0, 7, 0, 31, 0, 33, 0, 19, 0, 18, 0, 29, 0, 19, 0, 26, 0, 21, 0, 21, 0, 19, 0, 21, 0, 26, 0, 3, 0, 7, 0, 25, 0, 8, 0],
|
||
[0, 33, 0, 6, 0, 7, 0, 19, 0, 34, 0, 4, 0, 18, 0, 12, 0, 0, 0, 19, 0, 24, 0, 25, 0, 22, 0, 9, 0, 29, 0, 19, 0, 20, 0, 22, 0, 31, 0, 19, 0, 16, 0, 4, 0, 17, 0, 13, 0, 8, 0, 19, 0, 22, 0, 32, 0, 7, 0, 25, 0, 19, 0, 33, 0, 6, 0, 7, 0, 19, 0, 21, 0, 26, 0, 2, 0, 3, 0, 19, 0, 5, 0, 22, 0, 37, 0, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38],
|
||
[0, 9, 0, 7, 0, 19, 0, 4, 0, 8, 0, 7, 0, 19, 0, 0, 0, 19, 0, 26, 0, 8, 0, 19, 0, 22, 0, 4, 0, 25, 0, 19, 0, 13, 0, 26, 0, 5, 0, 5, 0, 18, 0, 29, 0, 37, 0, 19, 0, 33, 0, 22, 0, 0, 0, 7, 0, 29, 0, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38],
|
||
],
|
||
'attention_mask': [
|
||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
]
|
||
}
|
||
# fmt: on
|
||
|
||
tokenizer_classes = [self.tokenizer_class]
|
||
if self.test_rust_tokenizer:
|
||
tokenizer_classes.append(self.rust_tokenizer_class)
|
||
|
||
for tokenizer_class in tokenizer_classes:
|
||
tokenizer = tokenizer_class.from_pretrained(
|
||
"facebook/mms-tts-eng",
|
||
revision="d188a254c84ae6cfd24deb7a8f5c0c1d349d7d9f", # to pin the tokenizer version
|
||
)
|
||
|
||
encoding = tokenizer(sequences, padding=True, normalize=True)
|
||
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]]
|
||
|
||
encoding_data = encoding.data
|
||
self.assertDictEqual(encoding_data, expected_encoding)
|
||
|
||
for expected, decoded in zip(normalized_sequences, decoded_sequences):
|
||
self.assertEqual(expected, decoded)
|