mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* first commit * drop tokenizer * drop tokenizer * drop tokenizer * drop convert * granite * drop tokenization test * mup * fix * reformat * reformat * reformat * fix docs * stop checking for checkpoint * update support * attention multiplier * update model * tiny drop * saibo drop * skip test * fix test * fix test * drop * drop useless imports * update docs * drop flash function * copied from * drop pretraining tp * drop pretraining tp * drop pretraining tp * drop unused import * drop code path * change name * softmax scale * head dim * drop legacy cache * rename params * cleanup * fix copies * comments * add back legacy cache * multipliers * multipliers * multipliers * text fix * fix copies * merge * multipliers * attention multiplier * drop unused imports * add granitemoe * add decoration * remove moe from sequenceclassification * fix test * fix * fix * fix * move rope? * merge * drop bias * drop bias * Update src/transformers/models/granite/configuration_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * Update src/transformers/models/granite/modeling_granite.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix * fix * fix * drop * drop * fix * fix * cleanup * cleanup * fix * fix granite tests * fp32 test * fix * drop jitter * fix * rename * rename * fix config * add gen test --------- Co-authored-by: Yikang Shen <yikang.shn@gmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
100 lines
3.6 KiB
Python
100 lines
3.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import re
|
|
|
|
from transformers.utils import direct_transformers_import
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/check_config_docstrings.py
|
|
PATH_TO_TRANSFORMERS = "src/transformers"
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
|
|
|
|
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
|
|
|
|
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
|
|
# For example, `[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)`
|
|
_re_checkpoint = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
|
|
|
|
|
|
CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = {
|
|
"DecisionTransformerConfig",
|
|
"EncoderDecoderConfig",
|
|
"MusicgenConfig",
|
|
"RagConfig",
|
|
"SpeechEncoderDecoderConfig",
|
|
"TimmBackboneConfig",
|
|
"VisionEncoderDecoderConfig",
|
|
"VisionTextDualEncoderConfig",
|
|
"LlamaConfig",
|
|
"GraniteConfig",
|
|
"GraniteMoeConfig",
|
|
}
|
|
|
|
|
|
def get_checkpoint_from_config_class(config_class):
|
|
checkpoint = None
|
|
|
|
# source code of `config_class`
|
|
config_source = inspect.getsource(config_class)
|
|
checkpoints = _re_checkpoint.findall(config_source)
|
|
|
|
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
|
|
# For example, `('google-bert/bert-base-uncased', 'https://huggingface.co/google-bert/bert-base-uncased')`
|
|
for ckpt_name, ckpt_link in checkpoints:
|
|
# allow the link to end with `/`
|
|
if ckpt_link.endswith("/"):
|
|
ckpt_link = ckpt_link[:-1]
|
|
|
|
# verify the checkpoint name corresponds to the checkpoint link
|
|
ckpt_link_from_name = f"https://huggingface.co/{ckpt_name}"
|
|
if ckpt_link == ckpt_link_from_name:
|
|
checkpoint = ckpt_name
|
|
break
|
|
|
|
return checkpoint
|
|
|
|
|
|
def check_config_docstrings_have_checkpoints():
|
|
configs_without_checkpoint = []
|
|
|
|
for config_class in list(CONFIG_MAPPING.values()):
|
|
# Skip deprecated models
|
|
if "models.deprecated" in config_class.__module__:
|
|
continue
|
|
checkpoint = get_checkpoint_from_config_class(config_class)
|
|
|
|
name = config_class.__name__
|
|
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
|
|
configs_without_checkpoint.append(name)
|
|
|
|
if len(configs_without_checkpoint) > 0:
|
|
message = "\n".join(sorted(configs_without_checkpoint))
|
|
raise ValueError(
|
|
f"The following configurations don't contain any valid checkpoint:\n{message}\n\n"
|
|
"The requirement is to include a link pointing to one of the models of this architecture in the "
|
|
"docstring of the config classes listed above. The link should have be a markdown format like "
|
|
"[myorg/mymodel](https://huggingface.co/myorg/mymodel)."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
check_config_docstrings_have_checkpoints()
|